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ABSTRACT

The formulation of the dynamics of a rigid body requires a parameterization of finite ro-
tations to represent the orientation of the body. A commonly used parameterization is the
unit quaternion, also known as Euler parameters. Usually one starts with the equations
of motion of a rigid body in terms of the linear and angular velocity. Subsequently, the
derivative of the unit quaternion is related to the angular velocity, yielding a kinematic
constraint for the unity of the quaternion on velocity level (cf. [1]). To prevent constraint
drift in numerical simulations, the quaternion has therefore to be resized to unit length
after each integration step or, alternatively, the description has to be extended to a dif-
ferential algebraic equation (DAE) formulation, where the unit constraint is explicitly
contained in the set of equations. Unfortunately, the extension of the equations of motion
of a rigid body to a DAE yields a cumbersome formulation for which the Lagrange multi-
plier and the constraint equation have no direct physical meaning and the resulting mass
matrix is singular.

In the present work a different approach is taken. First, the infinite dimensional dynamics
of the continuum is reduced, by using perfect bilateral constraints, to a body with three
translational, three rotational and one uniform scaling degree of freedom. The displace-
ment of the center of gravity and an unconstrained quaternion are used as generalized
coordinates. By introducing an additional perfect bilateral constraint one can force the 7
degrees of freedom body to become a rigid body. Without reducing the set of coordinates,
this yields naturally a DAE description of the dynamics of a rigid body with a positive
definite 7 X 7 mass matrix and a Lagrange multiplier for the constraint force. Finally, the
derivative of the quaternion can be transformed to a scaling velocity and a generalized
angular velocity, giving the DAE a form which can be directly linked to the classical
equations of motion of a rigid body.

The unit constraint of the quaternion formulated as a perfect constraint can be stated as a
normal cone inclusion and solved together with those of the unilateral contacts. This DAE
formulation of a rigid body is useful for the construction of energy consistent integrators
for non-smooth mechanical systems.
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