On the equilibrium problem for masonry beams

Massimiliano Lucchesi¹, Miroslav Šilhavý², Nicola Zani¹

¹ Dipartimento di Costruzioni, Università di Firenze, Italy massimiliano.lucchesi@unifi.it nicola.zani@unifi.it

² Institute of Mathematics the AV CR, Prague, Czech Republic silhavy@math.cas.cz

In this paper we consider beams made of a no-tension material with infinite compressive strength according to the constitutive equation described in [4] and [5]. This equation expresses the (generalized) stresses $\mathbf{t} = (N, M)$ as functions of the (generalized) strains $\mathbf{e} = (\epsilon, \kappa)$, with N the normal force, M the bending moment, ϵ the (linearized) strain and κ the change of curvature of the axis of the beam.

We suppose that the displacement fields $\boldsymbol{u} = (\boldsymbol{w}, \boldsymbol{v})$ with \boldsymbol{w} and \boldsymbol{v} the axial and the transversal components, belong to the Sobolev space $W = W^{1,2} \times W^{2,2}$ and denote by V the (closed) subspace of W made of all the displacement fields that satisfy the boundary conditions. We put $Y = L^2(I, \mathbb{R}^2)$, $Y_0 = \{\hat{\boldsymbol{e}}(\boldsymbol{u}) : \boldsymbol{u} \in V\}$ and note that $Y_0 \subset Y$. The loads applied to the beam are specified by a continuous linear functional $\boldsymbol{l} : V \to \mathbb{R}$ and then the value $< \boldsymbol{l}, \boldsymbol{u} >$ of \boldsymbol{l} on \boldsymbol{u} is the work of the load \boldsymbol{l} corresponding to the admissible displacement $\boldsymbol{u} \in V$. We denote by $\hat{\phi}$ the stored energy and prove that it is strictly convex in stresses and bounded by some quadratic function of $|\boldsymbol{e}|$. Moreover, we say that $\boldsymbol{u}_0 \in V$ is an equilibrium state if it minimizes the total energy E.

Firstly we prove that there exists a stressfield equilibrating the loads if and only if we have $\langle \boldsymbol{l}, \boldsymbol{u} \rangle \leq c \| \widehat{\boldsymbol{e}}(\boldsymbol{u}) \|_{V}$ for each $\boldsymbol{u} \in V$ and some $c \in \mathbb{R}$.

Then we prove that if there exists a strain $\boldsymbol{e} \in Y_0$ and a stressfield $\boldsymbol{t} \in Y$ equilibrating the loads \boldsymbol{l} such that $D\widehat{\phi} \circ \boldsymbol{e} = \boldsymbol{t}$, then the external conditions have an equilibrium state and \boldsymbol{t} is admissible (i.e. 2|M/N| is less than the height of the section). Conversely, if \boldsymbol{u}_0 is an equilibrium state, then $\boldsymbol{t} = D\widehat{\phi} \circ \widehat{\boldsymbol{e}}(\boldsymbol{u}_0) \in Y$ is an admissible stressfield that equilibrates the loads. Moreover, if \boldsymbol{u}_1 and \boldsymbol{u}_2 are two equilibrium states for the loads \boldsymbol{l} and $\boldsymbol{t}_1, \boldsymbol{t}_2$ the stressfield corresponding to them, then $\boldsymbol{t}_1 = \boldsymbol{t}_2$.

Finally, we prove a proposition which states that the minimum of the total energy $E_0 := \inf\{E(\boldsymbol{u}) : \boldsymbol{u} \in V\}$ is bounded from below if and only if there exists an admissible stressfield $\boldsymbol{t} \in Y$ which equilibrates the loads. This last result is important in the study of limit analysis of masonry structures where the loads are the sum of a permanent and variable part, and depend linearly on a parameter λ , $\boldsymbol{l}(\lambda) = \boldsymbol{l}_0 + \lambda \boldsymbol{l}_1$. Indeed the supremum of the interval where $E_0(\lambda)$ is bounded from below can be interpreted as the collapse multiplier and then from this the static theorem of limit analysis follows easily [1, 2, 3].

Acknowledgment The research of M. Šilhavý was supported by Dipartimento di Costruzioni, Università di Firenze. The support is gratefully acknowledged.

References

- 1 Del Piero, G. (1998) Limit analysis and no-tension materials, *Int. J. Plasticity* **14** 259-271
- 2 Lucchesi, M.; Padovani, C.; Šilhavý, M. (2009) An energetic view of the limit analysis for normal bodies. To appear in *Quarterly of Applied Mathematics*
- 5 Lucchesi, M.; Šilhavý, M., Zani N. (2010) Equilibrium problems and limit analysis of

masonry beams. Submitted.

- 6 Orlandi, D. (1999) Analisi non lineare di strutture ad arco in muratura, Ph.D. thesis, Università degli studi di Firenze
- 8 Zani, N. (2004) A constitutive equation and a closed-form solution for no-tension beams with limited compressive strength. *European J. Mechanics A/Solids* **23** 467-484