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From yielding function and plastic potential to pseud ials and bi ial : a constructive procedure

Constitutive laws for plasticity

E={xeV /f(x) <0} elastic domain
for the generalized thermodynamic forces x € V
1. Associative flow rules
generalized normality condition of the flow x* € V*
to the boundary of E, (Halphen, Nguyen)
2. Non-associative flow rules
the direction of the flow x* is defined as
the gradient of the plastic potential g(x).

= introduction of pseudo-potentials to make sure that the mechanical
dissipation is positive (Moreau ).
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From yielding function and plastic potential to pseudo-potentials and bipotential : a constructive procedure

Associative flow rules

Associative flow rules

Definition of pseudo-potentials
x generalized thermodynamic force , x* flow.

¢(x) :==1Ig(x) indicator function of the elastic domainE
¢*(x*) :=sup(x - x" — @(x)) the Legendre-Fenchel conjugate of ¢
xeV

vV (x,x*) € Vx V* A(x) + @ (x*) > x - x*
The equality is reached for a pair (X,X*) which verifies
X" € 0o(X) and X € 9¢*(X")

and (X,X*) are the real physical values.
For non-associative flow rule the definition of such pseudo-potentials is
not straightforward.
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From yielding function and plastic potential to pseudo-potentials and bipotential : a constructive procedure

Non-associative flow rule

Non-associative flow rule

Two different approaches :

1. Introduction of a bipotential (de Saxcé, Hjiaj, Bodovillé)
b(x,x*) depending on the dual variables,

the thermodynamic force x and the flow x*,

separately convex and such that :

V(x,x*) € V x V* b(x,x*) > x - x*

Introduced for Drucker-Prager model and unilateral contact.

The stress-strain evolution is defined by the extremal couples of the
bipotential.

In the simple case of associative flow rule :

VY (x,x*) € V x V* b(x,x*) == p(x) + ¢*(x")
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From yielding function and plastic potential to pseudo-potentials and bipotential : a constructive procedure

- Non-associative flow rule

second approach :

2. Introduction of pseudo-potentials
depending on the state variables + Helmholtz free energy (Ziegler)

depending on generalized stresses + Gibbs free energy (Collins, Houlsby,
Puzrin , etc)

several exemples : Drucker-Prager, non-linear kinematic hardening,
endochronic theory, Mroz (Erlicher, Point)

Link between these two different approaches?

Bipotential

and/or
conjugated pseudo-potentials
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- Theoretical framework

General theoretical framework and notations

Assumption : isothermal and infinitesimal transformations.

f*@ € V non-dissipative (quasi-conservative) thermodynamic forces
defined as the gradient of the Helmholtz free density of energy ¢ (v)

fnd

=V (v) (1)

®,,, mechanical dissipation ®, (t) == f:v—¢ =Ff:v—f7.¥
f external forces, f¢ dissipative thermodynamic forces defined by :

f=f—f

2nd principle : the mechanical dissipation is assumed nonnegative :

| ®m (1) = (F =) -5 =73 > 0] (2)

To define conjugate pseudo-potentials is a usual way to obtain (2) :

£ € 96" (V) and Ve op <fd)
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From yielding function and plastic potential to pseudo-potentials and bipotential : a constructive procedure

- Theoretical framework

For the state variables (¢,u) = (&,£P, @) we use the distinction between
dissipative forces : f9 = (crd, pd) = (ad,Td, Xd)
non-dissipative forces : ™ = ("¢, p"™) = (a"d, r X”d>

o and ¢ are the thermodynamic forces associated with ¢.

79 and 7 are the thermodynamic forces associated with eP.

If the dissipation is independent of ¢ the corresponding actual value of
the dissipative force must be 0 : 0 =0

hence o = ", often o is written instead of .

The external forces are f = (0,0) = (0,0,0)

Since f¢ := f — f™
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Theoretical framework

LComment on the notation used in classical textbooks

If moreover the Helmholtz energy depends on € and &P only by

%(sfsp):c:(efep)

then —7" = C: (¢ — eP) = 0" hence

7_d _ 77_nd :Jnd -0
In classical textbooks fand g are functions of (o, X)
Actually the above relationships show that fand g are functions of the
dissipative forces.

f= f(rd,xd) = f(0,X), gzg(Td,Xd) =g (0,X)
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From yielding function and plastic potential to pseudo-potentials and bipotential : a constructive procedure
[ Constructive procedure

LConstruction of a pseudo-potential

Construction of a loading function

A plasticity model is defined by :

E={xeV /f(x) <0} elastic domain for thermodynamic forces
Vg(x) gives the direction of the flow x*.

We define a loading function F as :

V(x,y) eV xV  |[F(xy)=Ff(x)+V(g—F)(y) (x—y)]

ViF (x,y) = VI (x) + V(g —f)(y)
Hence for x =y and for any y :
LF Yy = (¥)]
| VsF (x.Y)l,-y = Ve (y)|

Remark 1: If x = pdl and y = —p”d/ then pdl + p"dl =x—y=0
Remark 2 : For any y the function

F(x,y):=f(x)+V(g—1)(y) (x—y) is the sum of f(x) and of a
linear function of x hence F is convex in x.

10/26



From yielding function and plastic potential to pseudo-potentials and bipotential : a constructive procedure

Constructive procedure

LConstruction of a pseudo-potential
Construction of pseudo-potentials
Ey={xeV/ F(x,y)<0} convex
¢ (x,y) :=Ig,(x) the indicator function of E,

¢ (x*,y) ;== sup(x - x* — ¢(x,y)) the Legendre-Fenchel conjugate of ¢
xeV

For any y, ¢*(x*,y) is conjugate of an indicator function of a convex
domain and it is also a convex function and for any y it is positively
homogenous with respect to x* and

¥ (x,y.x") €V x V x V* S(x.y) + & (x",y) = x - x"

B(x,y,x*) := ¢(x,y) + ¢*(x*,y)

The function B is bi-convex in x and in x* and such that

V(¥ X) EVXV XV B(xyx)>x x
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From yielding function and plastic potential to pseudo-potentials and bipotential : a constructive procedure
Constructive procedure

LConstruction of a bipotentiel

Construction of a bipotentiel

The dissipative forces associated to internal variables are opposite to the
corresponding non-dissipative forces

‘pd’ — _pn <:>x:y‘

Definition of a bipotential
For x =y ,B(x,x,x*)defineabi — functionb(x,x*) :

‘V (x,x*) € V x V* b(x,x*) := ¢(x7x)+q’)*(x*,x)‘

The function b is bi-convex in x and in x* and such that

vV (x,x") e VxV* b(x,x*) > x - x*

So there exists a couple (X,%*) such that b(X,X*) = X - X
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Drucker-Prager model

Drucker-Prager model

Non-associative elasto-perfectly plastic model :
(g,u) = (e,¢eP) state variables

(09, p?) = (¢, 77) thermodynamic forces

Flo) = lldev (o)]| n tr:())U)

ks tanp — ¢

tr(éP) = Atanf  with 0 <tanf < tang

oy 3 1 dev(o)
dev () = A Tdev (o]

M(o)=0, A>0, f(0)<0
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Drucker-Prager model

p = (tr(19), dev(79)),

f (p?) = ||de"(fd)|| (3d) tanp — ¢

(P ) Hdev - )” tr(T )tanH
V(g-f)(p?) = (tan 0 — tan y; 0) constant

Loading function F

F (pd”y) —f (pd') + (tan @ — tan ) (tr(p? —y))

0, € Opelg, (p?)
for p? =77 =y
tr (éP) = A(tan @ + (tan 0 — tan ¢))
. dev(7?
. dev (Ep) = )\,ild m
M (p?) <0=0, A>0, f(p?)<0
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Drucker-Prager model

Pseudo-potentials

¢ (Tda y) = ]IF(Td7y)§0(Td)

P*(éPy) = (C - # tan <P) ka ||dev (€P) || + Li, tan o]|dev(er) | <tr(cP)

Bipotential

b (éP,Td) = " (ép; Td) + ¢ (Td; Td)

b= (c-

tr(‘rd)

—5— (tanp — tan 0)) L tr (¢P)

tan 0

i, tan 9]l dev(er) | <tr(zr) T Te(z9)<0
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From yielding function and plastic potential to pseudo-potentials and bipotential : a constructive procedure
L Non-linear Kinematic } ing (NLK)

Non-linear Kinematic Hardening :classical formulation

a:C:(s(—ep)dj X?=D: (e - f)
b A dev(o—X 53 d
EP—AW, 6—)\kx

f(a—Xd) :‘dev (U—Xd)H—\/gay7
M=0,A>0 f<0
df _ 3

_ n:C:g
dt A= n:C:n+n:D:n—k n:D:X9

Often o = eP — (3 is used instead of § (Chaboche).
The force X9 is associated with the kinematic hardening.
Our formulation

(4. X) = [dev ()]~ 3, with 5, = /30,
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From yielding function and plastic potential to pseudo-potentials and bipotential : a constructive procedure
L Non-linear Kinematic } ing (NLK)

An additional scalar variable ( can be added.
v =(e,u) = (g,eP, B3, (), state variables

\IJ:%(5—5”):C:(5—6”)+%(6p—5)3Di(fp—ﬂ)
non-dissipative forces :
o™ =C:(c—¢P)
74 = _C:(e—eP)+D:(eP - B)
X" =_D: (P - B)

R =0
pnd — (Tnd7xnd7 Rnd)

with (rd’,xd’, Rd’) €S2 xS xR :

P X7 RY) = (17 %7 ) + R
=[] -5 +&*

2 !
+ R

g =] - &+ 3k |x

17/26



From yielding function and plastic potential to pseudo-potentials and bipotential : a constructive procedure

L Non-li Kinematic F ing (NLK)
Hence
] 0
V(g -7 (7 xR ) = | kxd
0

Loading function F

_ 1 9
&P = AL T
B = Ak(—=X™) = Ak(—X9)
C=A
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From yielding function and plastic potential to pseud

Non-linear Kinematic Hardening (NLK)

and bij jal : a ive pi

@)

1=2=

1

_

3
a'
V% T

b)

F1a.: Non-linear Kinematic Hardening .Variation of the elastic domain E,.
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Endochronic theory

For endochronic theory, no elastic domain.

c=C:(e—¢P), EP =B dev(0){, (>0 withﬁ:%

v = (g,u) =(g,eP, () state variables, with { the intrinsic time .

\U:%(s—sp):C:(s—s”)

non-dissipative forces in S? x S? x R

a =C:(s—¢P)
p"? = (7", R™) = (—C: (¢ — ”),0)

dissipative forces in S x R

(-7, R?) = R?

Ve(r9,RY) = < 8 de{(Td) )
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From yielding function and plastic potential to pseud ials and bi jal : a ive pi

Endochronic theory

F(x,y) =f(x)+V(E-F)y) (x—y)
with x=p% and y=-p =— (7 R)ecS2xR

F (pd” _pnd'> .y <Td’ : (_,rnd/) _ ‘ Tnd'H2> LRI < 0}

p N\ A(_ nd’
5 )\ﬁ( deV(T_))‘_y:pd
(=X
H _ nd’ _ .d —
with y=-p" =p F_—Ohence
AF <0 and FS0 A>0

Hence

— 37 dev (+9)

only condition : non-negativity of A the intrinsic time increment.
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d ials and bi

From yielding function and plastic potential to p: ive pi
Endochronic theory
Initial effective : ,
domain of ¢ \ R
1
2
3 (Bl
Actual effective Initial loading
i surface
domain of (b 0 r
v V% T
V35,
Actual loading
surface

(a)

)

F1G.: Endochronic theory .

a) Variation of Dy, domain of pseudo-potentiel

. b) Variation of E,.
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- Unilateral contact

u displacement of a point M with respect to a fixed plan rigid body.
(un < 0 impossible, u, = 0 contact, u, > 0 no contact)

u= ijt + L'/,, velocity
r =r? + rd n dissipative reaction of the rigid plan
it must remain in the convex K ={r / ||r¢]] < pra}

Description of the model

) = 8] e
. =\t
i =\vg(r!) — { "]
u, =0
. d d 0
since Vf(r?) = ||rf|| hence V(g —f)(r?) = { i
—

23/26



From yielding function and plastic potential to pseud ials and bi jal : a ive pi

Unilateral contact

Loading function F

) v )

rd | = prd +p(rd = yn)
rf,

— HUYn

Since y should be replaced by r? and since r¢ >0 then y, >0
Pseudo- potentials

o(r?,y) = Ir<o(r!)
¢* (0, y) = Tr- (i) + pyn (0]

For y = x = r? de Saxcé bipotential

b(i, r?) = ¢ (0, 1) + $(r? r¥)
= —( i) + prg ||ut||+]IK( )
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Conclusion

Constructive procedure

Our constructive procedure permits to construct a loading function and
then the corresponding pseudo-potentials and a bipotential.

Based on the distinction between dissipative and non dissipative
thermodynamic forces and on their relationship.

The method is illustrated by four examples :

1.
2.
3.
4.

non-associative Drucker-Prager model,
non-linear kinematic model,
Bouc-Wen endochronic theory,
unilateral-contact with dry friction,

The same sort of procedure can be used to define other rate-independent
flow rules
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Conclusion

Thank you for your attention
Any questions ?
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