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Griffith criterion as unilateral minimization problem

Principal ingredients:

K the pre-assigned path and ` the coordinate of the
tip of the crack along this path.

P(`) the potential energy as a function of `.

G(`) = −∂P(`)/∂` the associated energy release rate.

Surface energy Gc `, proportional to the crack length.

Griffith propagation criterion

` ≥ `0, G(`) := −∂P(`)/∂` ≤ Gc, (`− `0)(G(`)−Gc) = 0

Variational formulation

min
`≥`0
P(`) +Gc `

Limits: Initiation, Crack paths, Brutal crack propagation
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Variational approach of fracture: Griffith functional

Hypotheses:

Crack (K): surface of discontinuity of the displacements u

Linear isotropic material, geometrically linear theory.

Loading: imposed displacement U(t).

Energy functional

E(u,K) =

Z
Ω\K

1

2
A0 ε(u) · ε(u)| {z }

Potential energy

+ Gc area(K)| {z }
Surface energy

(A0 elasticity tensor, ε linearized deformations)

Principle of least energy for quasi-static evolution
(Global energy minimization)

References:

Francfort and Marigo J. Mech. Phys. Solids 1998

Bourdin, Francfort and Marigo J. Mech. Phys. Solids 2000, J. Elasticity 2007

Del Piero, Lancioni and Mach J. Mech. Phys. Solids 2007
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Variational approach: time-discrete quasi-static evolution problem

Variational formulation for monitonically increasing loadings (U1, ...Ui, ...Un)
The state at time Ti+1 = Ti + ∆T is:

min
u∈Ui(K),K⊇Ki

E(u,K)

where (ui,Ki) is the state at time Ti

E(u,K) =

Z
Ω\K

1

2
A0ε(u) · ε(u) +Gc area(K)

The irreversibility condition K ⊇ Ki is fundamental.

This is a Free Discontinuity Problem

Difficulty : to manage displacement fields u wich can be discontinuous anywhere

Existence results available in suitable functional setting (SBV/SBD/GSBV/GSBD spaces)
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Regularized formulation: Non-local damage models

The energy functional (Griffith)

E(u,K) =

Z
Ω\K

1

2
A0ε(u) · ε(u) +Gc area(K)

is approximated, in the sense of Γ-convergence, by a family of regularized elliptic functionals.

A possible regularized functional is

E`(u, α) =
1

2

Z
Ω
A(α) ε(u) · ε(u)| {z }

Appr. Elastic energy

+Gc

Z
Ω

„
`∇α · ∇α+

w(α)

`

«
| {z }

Appr. crack area

where α is an additional scalar field and ` a numerical parameter.

With suitable choices of the function w(α) and A(α) for `→ 0

min E`(u, α)→ min E(u,K)

(Γ-convergence results: convergence of global minima)
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Regularized formulation: mechanical interpretation

Regularized functional

E`(u, α) =
1

2

Z
Ω
A(α) ε(u) · ε(u)| {z }

Elastic energy

+ Gc

Z
Ω

„
`∇α · ∇α+

w(α)

`

«
| {z }

Dissipated energy

Mechanical interpretation:
α, a scalar field on Ω: an internal variable representing the damage field.

w(α): internal dissipation for homogeneous damage processes, e.g. w(α) = w1α
2.

A(α): the damaged elastic tensor, e.g. A(α) = A0 (1− α)2.

`: the internal length.

The regularized formulation corresponds to
the approximation of the brittle fracture problem by

a suitable non-local damage model with internal length `.
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Regularized damage model: 1D traction problem

Imposed end-displacement U(t), linearized elasticity, brittle isotropic material, quasi-static

E`(ut, αt)︸ ︷︷ ︸
Total energy

=

∫ L

0

1
2
E(αt(x))u′t(x)2dx︸ ︷︷ ︸

Elastic energy

+

∫ L

0

(
w(αt(x))

`
+ w1` α

′
t(x)2

)
dx︸ ︷︷ ︸

Dissipated energy

Unilateral local minimality
We define the damage evolution (ut, αt) through an unilateral (local) minimality principle on the
total energy under the irreversibility condition:

α̇t(x) :=
dαt(x)
dt

∈ D =
{
β ∈ H1(Ω) : β(x) ≥ 0 for almost all x

}
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First order optimality conditions: evolution problem

Rate evolution problem
C(Ut) =

˘
v ∈ H1(Ω) : v(0) = 0, v(L) = Ut

¯
, D =

˘
β ∈ H1(Ω) : β(x) ≥ 0 for almost all x

¯
For each t > 0, find (ut, αt) in C(Ut)×D1 such that

(u̇t, α̇t) ∈ C(U̇t)×D and ∀(v, β) ∈ C(U̇t)×D,

DE`(ut, αt)(v − u̇t, β − α̇t) ≥ 0

Equilibrium equations (obtained by setting β = α̇t)

σ′t(x) = 0, σt(x) = E(αt(x))u′t(x), ∀x ∈ (0, L).

Damage problem (obtained by setting v = u̇t)

- Irreversibility : α̇t ≥ 0, α0 = 0,

- Damage criterion : −w1`
2α′′t +

1

2
E′(αt)u

′
t
2

+ w′(αt) ≥ 0,

- Energy balance : α̇t

„
−w1`

2α′′t +
1

2
E′(αt)u

′
t
2

+ w′(αt)

«
= 0,

- Boundary conditions : α′t(0) ≤ 0, α′t(L) ≥ 0.

K.Pham, J.-J. Marigo, C.Maurini (UPMC) Gradient damage and brittle fracture 8 / 18



Second order optimality conditions: stability

Stability criterion
The state (ut, αt) is stable at time t

iff
(ut, αt) is a unilateral local minimum of the total energy

∃h > 0 such that E`(ut + hv, αt + hβ) ≥ E`(ut, αt), ∀(v, β) ∈ C1 ×D

Only reachable damage states are tested i.e. αt + hβ with β ≥ 0

By Taylor expansion, the stability is assessed by studying the sign of the second derivative

E`(ut + hv, αt + hβ)− E`(ut, αt) = hE ′`(ut, αt)(v, β) +
1

2
h2E ′′` (ut, αt)(v, β) +...

Introducing the Rayleigh ratio

Rt(v, β) =

R L
0 w1`2β′2 dx+

R L
0 E(αt)

“
v′ + E′(αt)

E(αt)
tβ
”2

dxR L
0

`
1
2
S′′(αt)σ2

t − w′′(αt)
´
β2 dx

a sufficient (resp. necessary) condition for stability is that

% = min
(v,β)∈C0×D

Rt(v, β) > (resp. ≥)1.
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Homogeneous solutions

Homogeneous solutions of the evolution problem: ut(x, t) = ε(t) x, ε(t) =
U0

L
t

α(x, t) = α(t)

Force-displacement (σ-ε) diagram?

Is there an elastic phase (α(t) = 0) for t ≤ te? Which is the elastic limit stress σe?

Is the homogeneous solution stable? When? Is there a maximum allowable stress σM for
homogeneous solutions?
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Homogeneous solutions: example 1

E`(ut, αt) =

Z L

0

1

2
E(αt(x))u′t(x)2dx+

Z L

0

„
w(αt(x))

`
+ w1` α

′
t(x)

2
«
dx

E(α) = E0(1− α)2, w(α) = w1α

Stress-displacement diagram

0 1 2
0

1

Ut�Ue

Σ
t�

Σ
M

Stability diagram

0 1 2 3
0

Λc

Ut�Ue

L
�{

Stable

Unstable

σe = σM =
p
w1E0, Ue =

r
w1

E0
L =

σM

E0
L. (1)
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Homogeneous solutions: example 2

E`(ut, αt) =

Z L

0

1

2
E(αt(x))u′t(x)2dx+

Z L

0

„
w(αt(x))

`
+ w1` α

′
t(x)

2
«
dx

E(α) = E0(1− α)2, w(α) = w1α
2

Stress-displacement diagram

0 1 2 3
0

1

Ut�UM

Σ
t�

Σ
M

Stability diagram

0 1 2 3
0

10

Ut�UM

L
�{

Stable Unstable

UM =
16σM

9E0
L, σM =

3
√

3

8
√

2

p
w1E0, αt =

U2
t

U2
t + 3U2

M

. (2)
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Localized solutions: fracture as localized damage

Solution with a single fully developed localization inside the bar for the case

E(α) = E0(1− α)2, w(α) = w1α

Damage profile

α(x) =

„
1−
|x− x0|√

2`

«2

for

x ∈ [x0 −
√

2`, x0 +
√

2`],

0 x0 - 2 { x0 x0 + 2 { L

0

1

Ut�Ue

Α

The energy dissipated in this kind of solution is

Gc =
4
√

2

3
w1 `

This gives a relation between the volume dissipation w1 and the surface dissipation Gc.
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Numerical implementation: alternate minimization

Solution algorithm based on an alternate minimization
1 Initialization

1 Set the values of the key numerical parameters: `, the mesh size, ∆T , the residual stiffness, δ.
2 Set k = 0 and (u

0
i+1, α

0
i+1) := (ui, αi).

2 Interation k
1 Equilibrium problem:

u
k
i+1 := arg minu E`(u, α

k−1
i+1 )

under the constraint u = u0 on ∂uΩ.
2 Damage problem:

α
k
i+1 := arg minα E`(u

k
i+1, α)

under the constraint αi ≤ α ≤ 1 .
3 End

1 Repeat step 2 until ‖αi+1 − αi‖∞ ≤ δ.
2 Set (ui+1, αi+1) := (u

k
i+1, α

k
i+1).

Finite elements (unstructured, uniform meshes): the mesh size h much be smaller than `

The step (2.2) implies a bound-constrained minimization of a quadratic functional of α.

Damage is treated as a nodal variable.
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2D numerical simulation: long bar

E(α) = E0(1− α)2, w(α) = w1α

t
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Long vs short bars: scale effect

Long bars (L = 2λc`)

t

Short bars (L = λc` /2)

t
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Numerical results: thermal shock cracks

Width = 5, Thickness = 1, Element size = .01

` = .02, θ0 = 54

No initial cracks

No assumptions on periodicity

No assumptions on crack pattern
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Numerical results: an overview of 3D results

Cylinder
(Thermal shock on the bottom face, free on the boundary)

891 000 elements, 101 time steps. Approx. 6h walltime on 256 cpus (Ranger, TACC)

Only fractures (α > 0.9) are reported. Colors are for the temperature field.

B.Bourdin, C.Maurini and M.Knepley (in preparation)
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