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Abstract

This is a brief text based on the communication to the seventh Meeting ”Uni-
lateral Problems in Structural Analysis”, held in Palmanova, Italia, June 17-19,
2010.

1 Introduction

The focus of this talk is on the concept of stability of quasi-static paths as
introduced by J. A. C. Martins and co-authors, in works ranging from 2000
to 2008.
Take a dynamic problem

mq̈ = f(t, q, q̇) +R

and the corresponding quasi-static problem

0 = f(t, q, q̇) +R.

Replacing dynamics by quasi-statics, for slow evolutions, requires:
- mathematical justification and the
- assessment of the limits of validity.
In a CISM course on instabilities (Udine, 1999; published 2000), Martins, Loret
and Simões recognized the role of different time scales, in the consideration
of dynamical and quasi-static problems, as well as the nature of a singular
perturbation problem, and this approach was developed subsequently. (Inves-
tigation of the approximation between such problems includes earlier works
by J. Martins, F. Gastaldi and M. M. Marques).
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The general idea of the present study is the following:
besides the variable t, the (fast) physical time, one considers also

� = "t,

a (slow) loading parameter.
If one lets the rate of loading tend to zero

"→ 0,

a quasi-static trajectory is expected to come up in the limit.

Stability of a quasistatic trajectory is taken to mean that dynamic trajec-
tories starting close to it will remain close, if the loading is slow enough.

The plan of the talk is to consider essentially the case of

Sect. 2 - A system with a finite number of degrees-of-freedom,

as in the paper
J.A.C. Martins, M.D.P. Monteiro Marques and A. Petrov, On the stability of
quasi-static paths for finite-dimensional elastic-plastic systems with harden-
ing, ZAMM 87 (2007) 303-313,

and then to mention very briefly

Sect. 3 - The case of an elastic-plastic 1-D bar,

as in
J.A.C. Martins, M.D.P. Monteiro Marques and A. Petrov, On the stability of
elastic-plastic systems with hardening, J. Math. Anal. Appl. 343 (2008) 1007–
1021,
and

Sect. 4 - A generalization, applicable to 3-D,

as in
A. Mielke, A. Petrov and J.A.C. Martins, Convergence of solutions of kinetic
variational inequalities in the rate-independent quasi-static limit, J. Math.
Anal. Appl. 348 (2008) 1012–1020.
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Before proceeding to Sect. 2, a few comments:

1 - Recall the equation of dynamics:

mq̈(t) = f(t, q(t), q̇(t)) +R(t, q(t), q̇(t))

and the loading parameter � = "t. Taking

q̄(�) = q(
�

"
) = q(t),

consideration of the above equation at t = �/" yields

m"2q̄ ′′(�) = f(�/", q̄(�), �q̄ ′(�)) +R(�/", . , . ),

where ′ denotes differentiation with respect to �.
Thus, the coefficient of the higher-order term (i.e. the ”mass”) m"2 → 0,
highlighting the singular perturbation and quasi-static nature of the limiting
procedure.
Notice also that the presence of �/" in the r.h.s. may require a special struc-
ture of the given forces or of the reaction law for R.

2 - Our topic is stability, with a few differences:

- The comparison is made between dynamic solutions and a quasi-static tra-
jectory, which is not a true dynamic solution.

- Consideration of different time-scales and/or of different initial values is
a mechanically relevant novelty with respect to previous studies (e.g. Duvaut-
Lions).

- Even in the absence of damping, the notion of stability is extended to allow
for dynamic trajectories remaining close to q.s. paths.
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2 A system with a finite number of degrees-of-freedom

We consider a finite dimensional model-problem involving an elastic-plastic
structure with linear kinematic hardening, with a geometrically linear be-
haviour. The model is a plane truss composed of n elastic-plastic bars, meet-
ing at a number of nodes (hinges), such that N is the total number of free
nodal x- and y-displacement components, i.e. all those that are not fixed. We
group these nodal displacement components uI , I = 1, . . . , N , in the nodal
displacement vector u. As a consequence of the geometric linearity, the elon-
gations ei, i = 1, . . . , n, of the elastic-plastic bars are linearly related to the
nodal displacements, i.e.

e = Lu, (1)

where e is the n-vector that collects all bar elongations, and L is a n × N
constant kinematic matrix, assumed to be injective.
Each bar (labeled by i) is assumed to have an elastic-plastic behaviour with
kinematic hardening, described by the following elements:

Ei and Hi denote the stiffness of the elastic spring (in series with the plas-
tic/sliding element) and of the hardening spring (the one in parallel with the
plastic element), respectively. The elongation ei of each bar can be decomposed
into elastic and plastic contributions, ei = eei + epi , or, defining the n-vectors
ee and ep:

e = ee + ep. (2)

Denoting by �i the force in the bar i, that force is, on one hand, proportional
to the elastic elongation eei (Hooke’s law) �i = Eie

e
i = Ei(ei − epi ) and, on the

other hand, it equals the sum of the force in the plastic element, ri, with the
force in the hardening spring, �i = ri + Hie

p
i . We collect the stiffness coeffi-

cients Ei and Hi in the diagonal n× n matrices E and H , and the forces �i
and ri in the n-vectors � and r.

It can be shown that the forces in the elastic-plastic bars take the form:

� = �(u, r) = D(Lu+H−1r) = DLu+ED̃
−1
r, (3)

where D =
(
E−1 +H−1

)−1
and D̃ = E +H are diagonal matrices.
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As for the forces f we decompose them into external forces applied on the
nodes, f ext, and internal forces, f int, acted on the nodes by the neighboring
bars, with

f = f ext(�) + f int(u, r).

Indeed, it can be shown that

f int = f int(u, r) = −LT�(u, r). (4)

Each plastic element is characterized by the inequalities and flow rule:

∣ri∣ ≤ 1,
depi
d�

⎧⎨⎩
≥ 0 if ri = +1,

= 0 if − 1 < ri < +1,

≤ 0 if ri = −1,

∀i = 1, . . . , n, (5)

where, w.l.o.g., the yield forces in all bars, both in tension and compression,
are assumed to be unitary. This may also be written in inclusion form:

depi
d�
∈ N[−1,1](ri).

DYNAMICS

We write the governing dynamic equations of the system in terms of a load
parameter � that parametrizes the evolution of the given external forces
f ext = f ext(�).
It is related to the physical time t according to

� = �1 + "t,

�1 being the initial value of the load parameter. The time rate of change of
the load " = d�/dt is supposed to be small and (⋅)′ denotes differentiation
with respect to �, d(⋅)/d�. Taking M as the (constant, symmetric, positive
definite) mass matrix, the governing dynamic equations can be written as

"2Mu′′(�) = f ext(�) + f int(u(�), r(�)),

or more precisely

"2Mu′′(�) +LTDLu(�) +LTDH−1r(�) = f ext(�). (6)

To this equation must be added the flow rule:

(ep)′ ∈ NC(r),

where C = [−1, 1]n, ep = (epi ) and r = (ri).
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Taking into account the relations between quantities above and introducing
the velocity

v = "u′,

we obtain the system⎧⎨⎩
"u′ − v = 0,

"Mv′ +LTDLu+LTDH−1r = f ext,

D̃
−1
r′ −H−1DLu′ +N C(r) ∋ 0,

(7)

with some initial conditions(
u(�1),v(�1), r(�1)

)
= (u1,v1, r1) ∈ ℝN × ℝN × C. (8)

The corresponding quasi-static system is (take " = 0 above):⎧⎨⎩L
TDLū+LTDH−1r̄ = f ext,

D̃
−1
r̄′ −H−1DLū′ +N C

(
r̄
)
∋ 0,

(9)

with initial conditions
r̄(�1) = r̄1 ∈ C. (10)

A few remarks:
Note that, consistently with the above, the quasi-static displacement rate with
respect to the physical time vanishes (v̄ ≡ 0). Also, the first (vector) equation
gives ū in terms of r̄, so that the initial value may be specified only for the
latter. Given the presence of a differential inclusion associated to a maximal
monotone operator, this problem exhibits a certain level of non-smoothness.

The above differential inclusions may also be written in VARIATIONAL FORM:

(Dynamics) r ∈ C and∫ �

�1

(
D̃
−1
r′ −H−1DLu′

)
⋅ (r∗ − r) d� ≥ 0, ∀r∗ ∈ C, ∀� ∈ [�1, �2], (11)

(Quasi-statics) r̄ ∈ C and∫ �

�1

(
D̃
−1
r̄′ −H−1DLū′

)
⋅ (r∗ − r̄) d� ≥ 0, ∀r∗ ∈ C, ∀� ∈ [�1, �2]. (12)
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2.1 Existence results

By the theory of maximal monotone operators and evolution problems, one is
able to prove that:

Theorem 2.1 If f ext belongs to W 1,∞
N (�1, �2) and r1 ∈ C, then there exists

a unique solution (u,v, r) of the dynamics problem (7) together with initial

condition (8), belonging to
(
W 1,∞

N (�1, �2)
)2
×W 1,∞

n (�1, �2).

Theorem 2.2 If f ext belongs toW
1,∞
N (�1, �2) and r̄1 ∈ C, then there exists a

unique solution r̄ of (9) belonging to W 1,∞
n (�1, �2), with initial condition r̄1.

By (9), it follows that ū also belongs to W 1,∞
N (�1, �2). Later, we shall assume

that
f ext ∈W

2,∞
N (�1, �2)

to allow further differentiation of the solutions.
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2.2 Stability of a quasi-static path

The mathematical definition of stability of a quasi-static path at an equi-
librium point (ū(�1), r̄1) is the following, for the dynamic and quasi-static
systems under analysis:

Definition. The quasi-static path (ū(�), r̄(�)) is said to be STABLE at �1
if there exists 0 < Δ� ≤ �2 − �1, such that, for all � > 0 there exists �̄(�) > 0
and "̄(�) > 0 such that if " > 0 and the initial conditions u1, v1, r1, r̄1 (with
r1 ∈ C, r̄1 ∈ C) are such that

∣v1∣2 + ∣u1 − ū(�1)∣2 + ∣r1 − r̄1∣2 ≤ �̄(�) and " ≤ "̄(�),

then the solution (u(�),v(�), r(�)) of the dynamic system (7)–(8) satisfies

∣v(�)∣2 + ∣u(�)− ū(�)∣2 + ∣r(�)− r̄(�)∣2 ≤ �, ∀� ∈ [�1, �1 + Δ�].

In other words, in order that the two solutions remain close to each other
in some finite interval of load, it suffices that the dynamic solution of (7) is
initially close to the quasi-static solution of (9) and that the loading rate " is
sufficiently small. The stability follows from

Theorem 2.3 If the initial data are admissible and f ext ∈ W
2,∞
N (�1, �2),

then there exist i > 0, i = 1, 2, such that

∣v(�)∣2 + ∣u(�)− ū(�)∣2 + ∣r(�)− r̄(�)∣2

≤ 1
(
∣v1∣2 + ∣u1 − ū(�1)∣2 + ∣r1 − r̄1∣2

)
+ 2". (13)

SKETCH OF PROOF.
We subtract the equality in the quasi-static system from the equality in the
dynamic problem, then take the scalar product with u′− ū′ and we integrate
over (�1, �). On the other hand, we choose r∗ = r̄ in (11) and r∗ = r in (12),
and we add (11) to (12). This leads to the following system:⎧⎨⎩

∫ �

�1
"2(Mu′′) ⋅ u′ d� +

∫ �

�1

(
LTDL(u− ū) +LTDH−1(r − r̄)

)
⋅ (u′ − ū′) d�

=
∫ �

�1
"2(Mu′′) ⋅ ū′ d�,∫ �

�1

(
D̃
−1

(r′ − r̄′)−H−1DL(u′ − ū′)
))
⋅ (r − r̄) d� ≤ 0.

(14)
Now, in the above expressions, two terms cancel each other, while other terms
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are the derivatives of the terms in the function

ℎ = (Mv) ⋅ v +
(
LTDL(u− ū)

)
⋅ (u− ū) +

(
D̃
−1

(r − r̄)
)
⋅ (r − r̄) (15)

By the Cauchy-Schwarz inequality, we obtain the following inequality

ℎ(�) ≤ ℎ(�1) + ∥M∥∞
(∫ �

�1
∣"v′∣2 d�

)1/2 (∫ �

�1
∣ū′∣2 d�

)1/2

, (16)

where ∥M∥∞ = maxi
∑
j∣Mij∣, Observing that M , LTDL and D̃

−1
are sym-

metric positive definite matrices, we conclude from (16) that there exists � > 0
such that

∣v(�)∣2+∣u(�)−ū(�)∣2+∣r(�)−r̄(�)∣2 ≤ �ℎ(�1)+�

(∫ �

�1
∣"v′∣2 d�

)1/2 (∫ �

�1
∣ū′∣2 d�

)1/2

,

so that it is sufficient to control the term "v′, i.e. "2u′′.

The a priori bound on "v′ can be obtained as follows.

First consider the regularized (Yosida-Moreau) problem for � > 0:⎧⎨⎩
"2Mu′′� +LTDLu� +LTDH−1r� = f ext,

D̃
−1
r′� −H−1DLu′� +

1

�

(
r� − projCr�

)
= 0,

(17)

with (
u�(�1),v�(�1), r�(�1)

)
= (u1,v1, r1) ∈ ℝN × ℝN × C.

Here projC denotes the projection on the convex C.

As � → 0, the solutions u�, r� converge to the solution u, r of the dy-
namical problem.
Extra-regularity, as u� belongs to W 3,∞ and r� to W 2,∞, allows differentia-
tion of equations and this is helpful to establish energy estimates which will be
extendable to u and thus to v = "u′. Also, Gronwall’s lemma may be applied,
etc. One finally obtains an estimate for "v′:

Lemma 2.4 Assume that r1 ∈ C and f ext belongs to W 2,∞
N (�1, �2). Then

there exists a positive constant c(�1, �2) which depends on the interval of load-
ing and which is such that

∣"v′(�)∣2 ≤ c(�1, �2)
(
∣v1∣2 + ∣u1 − ū(�1)∣2 + ∣r1 − r̄1∣2

+ "2∣f ′ext(�1)∣2 + "2∥f ′ext∥2L∞(�1,�2)
+ "2∥f ′′ext∥2L2(�1,�2)

)
.

(18)

from which, as explained above, the desired stability follows.
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3 The case of an elastic-plastic 1-D bar

The mathematical formulation now requires the use of functions of t or � and
of a (space) variable x ∈ [0, L]. Leaving all details to the paper mentioned in
the plan of this talk, the dynamics can be expressed by the system:⎧⎨⎩

"u′ − v = 0,

"v′ − uxx − rx = f,

u′x − r′ ∈ NC(r),
(19)

together with the Dirichlet boundary conditions u = v = 0 on {0, L}×(�1, �2),

and the initial conditions
(
v(�1), u(�1), r(�1)

)
= (v1, u1, r1) ∈ V0 ×W. where

C is now the set of functions r ∈ L2([0, L]) such that ∣r∣ ≤ 1 a.e., while
V0 = H1

0 (0, L) and W is a certain subspace of V0 × C.

The corresponding quasi-static system is then (let " = 0 in (19))⎧⎨⎩−ūxx − r̄x = f,

ū′x − r̄′ ∈ NC(r̄),
(20)

with the Dirichlet boundary conditions ū = 0 on {0, L} × (�1, �2), and the

initial conditions
(
ū(�1), r̄(�1)

)
= (ū1, r̄1) ∈ W.

The definition of stability is analogous to the one in the previous section
and the precise mathematical result reads:

Theorem 3.1 (Stability). Let (v1, u1, r1) ∈ V0 × W , (ū1, r̄1) ∈ W and f ∈
W 2,∞(�1, �2;L

2(0, L)) be given. Then there exist  > 0 such that for 0 < " < 1,

∣v(�)∣2 + ∣ux(�)− ūx(�)∣2 + ∣r(�)− r̄(�)∣2

≤ 
(
∣v1∣2 + ∣u1x − ū1x∣2 + ∣r1 − r̄1∣2 + "

)
.

The proof follows the same general outline, but it is more involved. We again
use Moreau-Yosida regularization (elasto-visco-plastic systems), but also their
finite-dimensional (Galerkin) approximations, in order to obtain the a priori
estimates needed to establish stability. Also, in the process of comparing dy-
namic solutions and the quasi-static solution we had to consider an auxiliary
special dynamic solution as an intermediate step.
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4 A generalization, applicable to 3-D

In the paper

A. Mielke, A. Petrov and J.A.C. Martins, Convergence of solutions of kinetic
variational inequalities in the rate-independent quasi-static limit, J. Math.
Anal. Appl. 348 (2008) 1012–1020,

the reader may find a more abstract and general treatment of the stability
results mentioned in the previous Sections. Their study concerns evolutionary
variational inequalities or inclusions of the form

Mq̈(t) + Aq(t) + ∂ℛ(q̇(t)) ∋ l(t),

for the dynamics, and

Aq̄(�) + ∂ℛ(q̄ ′(�)) ∋ l̄(�),

as the limit rate-independent system (l is the external loading and ℛ the dis-
sipation functional).

Instead of Moreau-Yosida regularization and time-differentiation, the authors
rely on a difference quotient technique to obtain relatively simple and explicit
bounds and then proceed to prove that kinetic evolutions remain close to a
rate-independent path, if they start sufficiently close to the latter and if the
load is applied sufficiently slowly, i.e. they prove stability in the sense of J.A.C.
Martins et al.

The paper also contains an application to a 2-D or 3-D elastic plastic body
with linear kinematic hardening.
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