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MOTIVATION
Collagen is the most abundant protein of the human body
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Collagen organization reflects its key role in the mechanical 
strength and functionality of living tissue

Macro-, micro- and nano-scale characteristics of collagenous 
structures highly affect tissues mechanics

MOTIVATION
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At macroscale: mechanics of tissues affects organs functionality

MULTISCALE MECHANICAL MODELING OF COLLAGENOUS TISSUES

MOTIVATION: A NEED FOR MECHANICAL MODELS

At nanoscale: Injuries, diseases and healing are 
often related with molecular alterations

At microscale: Cellular stress environment affects 
molecular pathways leading to tissue remodeling
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~ mm ~ μm

Organized hierarchical structure
from the nano- up to the macro-scale. 

FIBER

FIBRILS

MOLECULES

AMINOACIDS

~ nm

macro micro nano

MOTIVATION
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Fibers ~ 10 μm

Fibril ~ 1 μm

Collagen molecule 
~ 300 nm

Aminoacids 
~ 1 nm

Labile domain 
(defect ~ 20 nm long)

≡ Molecular kink

Collagen 
triple helix

Gap

Cross-link

MOTIVATION
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OUTLINE

⇒ Mechanics of soft tissues: macroscale → nanoscale

⇒ A multiscale elasto-damaging model for 
collagenous fibrils: 

Nanoscale: Molecular model

Nanoscale: Cross-links model

Microscale: Fibril model

⇒ Conclusions and Perspective: Back to the macroscale
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⇒ Mechanics of soft tissues: macroscale → nanoscale

⇒ A multiscale elasto-damaging model for collagenous fibrils: 

Nanoscale: Molecular model

Nanoscale: Cross-links model

Microscale: Fibril model

⇒ Conclusions and Perspective: Back to the macroscale

OUTLINE
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MECHANICS OF SOFT TISSUES: MACROSCALE
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Macroscale response is ruled by
micro- and nano-scale mechanisms
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TOE LINEAR

STRAIN

S
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S

2%               5% 8%

YIELD AND FAILURE 
REGION

TOE REGION: 
removal of the fibers/fibrils microscopic crimps

F

F

HEEL

MECHANICS OF SOFT TISSUES: MACROSCALE

Fratzl (1997), Freed (2006)
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TOE HEEL LINEAR

S
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S

2%               5% 8%

YIELD AND FAILURE 
REGION

KINKS

HEEL REGION: 
kinks straightening due to entropic mechanisms

Sasaki (1996), Fratzl (1997)

MECHANICS OF SOFT TISSUES: MACROSCALE
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TOE HEEL LINEAR
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YIELD AND FAILURE 
REGION

LINEAR REGION: 
stretching of collagen triple-helices

MECHANICS OF SOFT TISSUES: MACROSCALE

Fratzl (1997), Buehler (2007)
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TOE HEEL LINEAR

S
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S

2%               5% 8%

YIELD AND FAILURE 
REGION

YIELD AND FAILURE REGION: 
Nanoscale mechanisms

MECHANICS OF SOFT TISSUES: MACROSCALE

Molecular/Cross-links 
damage
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YIELD AND FAILURE REGION: 

MECHANICS OF SOFT TISSUES: MACROSCALE

Molecular crack:
Molecular slippage 

due to cross-link damage:

D
a
m
a
g
e

Buehler (2008)
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⇒ Mechanics of soft tissues: macroscale → nanoscale

⇒ A multiscale elasto-damaging model for collagenous fibrils: 

Nanoscale: Molecular model

Nanoscale: Cross-links model

Microscale: Fibril model

⇒ Conclusions and Perspective: Back to the macroscale

OUTLINE
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z

z

ELASTIC RESPONSE BRITTLE
FAILURE

MECHANICS OF SOFT TISSUES: NANOSCALE

Experimental data

Atomic Force Microscopy of an isolated molecule:

~ pN

~ nm
Bozec (2005)
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Entropic elasticity

z

z

BRITTLE
FAILURE

MECHANICS OF SOFT TISSUES: NANOSCALE

Experimental data

Atomic Force Microscopy of an isolated molecule:

~ pN

~ nm
Bozec (2005)
Bozec (2005)
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helices
stretching 

z

z

MECHANICS OF SOFT TISSUES: NANOSCALE

Energetic elasticity
Non-linear elastic response 

Entropic elasticity
Experimental data

Energetic elasticity

Atomic Force Microscopy of an isolated molecule:

Bozec (2005)
Bozec (2005)

Maceri et al. (2010)

~ pN

~ nm
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Homogeneous traction of an isolated fibril:

MECHANICS OF SOFT TISSUES: MICRO-/NANO- SCALE

Dynamical molecular simulations:
(Buehler, 2008)

F F

Cross-links 
density β

β ≈ 15 → 1 covalent 
cross-link/molecule

Collagen 
triple helix

Gap

Cross-link
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Fibrils elasto-damaging mechanical behaviour affects 
the overall tissue response in corpore.

NUMBER OF CROSS-LINKS
Reduced stiffness and 
ductile mechanisms

Increased strength and 
brittle-like behaviour

FF

Tissue tear

MECHANICS OF SOFT TISSUES: MICRO-/NANO- SCALE
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⇒ Mechanics of soft tissues: macroscale → nanoscale

⇒ A multiscale elasto-damaging model for 
collagenous  fibrils:

Nanoscale: Molecular model

Nanoscale: Cross-links model

Microscale: Fibril model

⇒ Conclusions and Perspective: Back to the macroscale

OUTLINE
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A MODEL FOR COLLAGENOUS FIBRILS

z x

y

Lf : fibril length
Af : fibril cross-section
Ωf : fibril volume

GEOMETRY
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A MODEL FOR COLLAGENOUS FIBRILS
Lf : fibril length
Af : fibril cross-section
Ωf : fibril volume

Nm: number of molecules
Lm : molecular length
Am: molecular cross-section
Ωm : molecular volume

Number of molecules

along fibril length

on fibril cross-section

Averaged quantities:

z x

y

GEOMETRY
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A MODEL FOR COLLAGENOUS FIBRILS
Lf : fibril length
Af : fibril cross-section
Ωf : fibril volume

Nm: number of molecules
Lm : molecular length
Am: molecular cross-section
Ωm : molecular volume

Ncl: number of cross-links Expressed in terms of 
molecular number:

z x

y

GEOMETRY
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F F

A MODEL FOR COLLAGENOUS FIBRILS

Homogeneous traction

Two main deformation mechanisms:

-Molecular straightening:

-Cross-link straightening:

LOADING

KINEMATICS
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ΔLm

A MODEL FOR COLLAGENOUS FIBRILS

Lm Lm

Molecular state variables:

Accounting for:
Entropic elasticity
Energetic elasticity

Accounting for:
Brittle fracture

• Molecular free-energy density and dissipative pseudopotential density:

Damage parameter:
βm = 0  → cracked
βm = 1  → sound
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A MODEL FOR COLLAGENOUS FIBRILS

Cross-link state variables:

Assuming:
Linear elastic behaviour

• Cross-link free-energy and dissipative pseudopotential:

Accounting for:
Ductile failure

Damage parameter:
βcl = 0  → cracked
βcl = 1  → sound
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A MODEL FOR COLLAGENOUS FIBRILS

Periodic 
geometry

HOMOGENIZATION

Molecular and cross-links behaviour 
rule fibril’s response
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A MODEL FOR COLLAGENOUS FIBRILS

Fibril’s Free-Energy density:

Fibril’s dissipative pseudopotential 
density:

ns → +∞

ns → +∞

( )i = ( )j = ( ) (i≠j)
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A MODEL FOR COLLAGENOUS FIBRILS

F F

MICRO-NANO KINEMATIC COMPATIBILITY

ΔLm

Kinematic assumption:

ΔLfLfLf = nsLm

MICRO:

NANO:
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CONSTITUTIVE LAWS AT NANOSCALE

Molecular stress:

Nanostress due to molecular damage:

Cross-link reactive force:

Nanoforce due to cross-link damage:

CONSTITUTIVE LAWS AT MICROSCALE

Fibril stress: Cross-links total reactive force at 
fibrillar level:

A MODEL FOR COLLAGENOUS FIBRILS
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By the Principle of Virtual Powers:

Equilibrium equations:
(Nanoscale)

EQUILIBRIUM AT NANOSCALE

where σm, bm, R, and Bcl are static quantities at nanoscale, dual to kinematic variables

A MODEL FOR COLLAGENOUS FIBRILS

where:
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EQUILIBRIUM AT MICROSCALE

By the Principle of Virtual Powers at the microscale:

Equilibrium equations:
(Microscale)

where σf and Rf are static quantities at microscale, dual to εf and δ.

Nanoscale state variables: Microscale state variables:

A MODEL FOR COLLAGENOUS FIBRILS

F F
where:
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By homogenization and compatibility:

By equilibrium:

A MODEL FOR COLLAGENOUS FIBRILS

A BRIDGE FROM NANOSCALE TO MICROSCALE
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⇒ Mechanics of soft tissues: macroscale → nanoscale

⇒ A multiscale elasto-damaging model for 
collagenous fibrils:

Nanoscale: Molecular model

Nanoscale: Cross-links model

Microscale: Fibril model

⇒ Conclusions and Perspective: Back to the macroscale

OUTLINE
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Dissipative pseudopotential density:

It will give linear dependence for 
the evolution of damage

Irreversibility condition for damage 
evolution

Threshold  of damage activation

Free-energy density:

A MODEL FOR COLLAGENOUS FIBRILS: MOLECULAR MODEL
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Free-energy density:

: characteristic point of energetic elasticity

Note that:

Two parameters are linked with physical 
nano-scale mechanisms :

A MODEL FOR COLLAGENOUS FIBRILS: MOLECULAR MODEL

Ψ
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Elastic modulus in entropic elasticity:

Compliant to results in Bueheler (2009) 
for non-linear energetic elasticity

Recovery of the classical 
formulation for entropic elasticity 

(Worm-Like Chain model)

Elastic modulus in energetic elasticity

Requirements: Uniqueness of

}
A MODEL FOR COLLAGENOUS FIBRILS: MOLECULAR MODEL
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A MODEL FOR COLLAGENOUS FIBRILS: MOLECULAR MODEL

MODEL VALIDATION: 
ENERGETIC ELASTICITY

: upper bound of collagen   
elastic modulus (40 GPa)

m: parameter dependent on 
deformation rate

εt : characteristic point of the 
given evolution law 

Benchmarks on an isolated straight molecule (i.e, εm ≡ molecular material strain) 
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A MODEL FOR COLLAGENOUS FIBRILS: MOLECULAR MODEL

MODEL VALIDATION:
ENTROPIC + ENERGETIC MODEL

z
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A MODEL FOR COLLAGENOUS FIBRILS: MOLECULAR MODEL

MODEL VALIDATION:
ENTROPIC TO ENERGETIC TRANSITION

Equivalent elastic modulus of a collagen molecule:
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A MODEL FOR COLLAGENOUS FIBRILS: MOLECULAR MODEL

0 50 100 150 200 250 300
0
5

10
15
20
25
30
35
40

E m
 (G

Pa
)

εm (%)

 Model results
 Energetic elasticity
 Entropic elasticity

MODEL VALIDATION:
ENTROPIC TO ENERGETIC TRANSITION

Equivalent elastic modulus of a collagen molecule:
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MODEL VALIDATION:
MOLECULAR BREAKAGE

A MODEL FOR COLLAGENOUS FIBRILS: MOLECULAR MODEL

z

Collagen strength and brittle-like mechanism are accurately reproduced 
(wm ≈ 1,8 J, cm=10-3)
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⇒ Mechanics of soft tissues: macroscale → nanoscale

⇒ A multiscale elasto-damaging model for 
collagenous fibrils:

Nanoscale: Molecular model

Nanoscale: Cross-links model

Microscale: Fibril model

⇒ Conclusions and Perspective: Back to the macroscale

OUTLINE
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Free-energy:

ρ : parameter expressing covalent bonds density within a cross-link
k : stiffness of a covalent bond

Threshold  of damage activation

Dissipative pseudopotential:

It will give linear dependence for 
the evolution of damage quantity

Irreversibility 
condition

Dissipative yield term

A MODEL FOR COLLAGENOUS FIBRILS: CROSS-LINKS MODEL

: cross-link yield force
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⇒ Mechanics of soft tissues: macroscale → nanoscale

⇒ A multiscale elasto-damaging model for 
collagenous fibrils:

Nanoscale: Molecular model

Nanoscale: Cross-links model

Microscale: Fibril model

⇒ Conclusions and Perspective: Back to the macroscale

OUTLINE
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EQUILIBRIUM EQUATIONS:

Damage evolution laws:

F F

A MODEL FOR COLLAGENOUS FIBRILS: THE FULL MODEL
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Model results:

MODEL VALIDATION:

λρ = 1 ↔  β =15 (→ 1 covalent cross-link/molecule)

Dynamical molecular simulations:
(Buehler, 2008)

F F

A MODEL FOR COLLAGENOUS FIBRILS: THE FULL MODEL

λρ ≈ cross-links density
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MODEL RESULTS:
λρ=1 F F

Nano-scale deformation mechanisms 
are effectively taken into account at the micro-scale

A MODEL FOR COLLAGENOUS FIBRILS: THE FULL MODEL
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Model takes into account the hierarchical and 
organized structure of collagen fibrils
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⇒ Mechanics of soft tissues: macroscale → nanoscale

⇒ A multiscale elasto-damaging model for collagenous fibrils: 

Nanoscale: Molecular model

Nanoscale: Cross-links model

Microscale: Fibril model

⇒ Conclusions and Perspective: Back to the macroscale

OUTLINE
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COLLAGEN
FIBER

nano micro macro

Present Model Standard homogenization approach 
for biological fiber reinforced 

materials (Maceri et al., 2010)

CONCLUSIONS AND PERSPECTIVE
BACK TO THE MACROSCALE
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CONCLUSIONS AND PERSPECTIVE
BACK TO THE MACROSCALE

Lamellar unit degradation (-50%) is a key factor in 
the development of aneurismal dilatation 

(Zatina,1984 – Wilson,1999)

Healthy aorta

Aneurism

F. Maceri, M. Marino, G. Vairo (2010) A unified multiscale mechanical model for soft collagenous 
tissues with regular fiber arrangement, J. Biomechanics 43:355-363
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