

7th International Meeting on UNILATERAL PROBLEMS IN STRUCTURAL ANALYSIS

Palmanova, 17-19 June 2010

A model for the mechanical response with damage of collagenous biostructures

Franco Maceri, Michele Marino, Giuseppe Vairo

University of Rome "Tor Vergata" Department of Civil Engineering Faculty of Engineering

MOTIVATION

MOTIVATION

Collagen organization reflects its key role in the mechanical strength and functionality of living tissue

Macro-, micro- and nano-scale characteristics of collagenous structures highly affect tissues mechanics

MULTISCALE MECHANICAL MODELING OF COLLAGENOUS TISSUES

At macroscale: mechanics of tissues affects organs functionality

At microscale: Cellular stress environment affects molecular pathways leading to tissue remodeling

At nanoscale: Injuries, diseases and healing are often related with molecular alterations

Maceri, Marino, Vairo, A model for the mechanical response with damage of collagenous biostructures

MOTIVATION

MOTIVATION

 \Rightarrow Mechanics of soft tissues: macroscale \rightarrow nanoscale

⇒ A multiscale elasto-damaging model for collagenous fibrils:

> Nanoscale: Molecular model

Nanoscale: Cross-links model

Microscale: Fibril model

 \Rightarrow Conclusions and Perspective: Back to the macroscale

\Rightarrow Mechanics of soft tissues: macroscale \rightarrow nanoscale

 \Rightarrow A multiscale elasto-damaging model for collagenous fibrils:

Nanoscale: Molecular model

Nanoscale: Cross-links model

Microscale: Fibril model

 \Rightarrow Conclusions and Perspective: Back to the macroscale

Macroscale response is ruled by micro- and nano-scale mechanisms

TOE REGION:

removal of the fibers/fibrils microscopic crimps

Maceri, Marino, Vairo, A model for the mechanical response with damage of collagenous biostructures 10/52

HEEL REGION:

kinks straightening due to entropic mechanisms

LINEAR REGION:

stretching of collagen triple-helices

YIELD AND FAILURE REGION:

Nanoscale mechanisms

YIELD AND FAILURE REGION:

Molecular slippage Molecular crack: due to cross-link damage: Г a m a g e Buehler (2008)

Maceri, Marino, Vairo, A model for the mechanical response with damage of collagenous biostructures 14/52

\Rightarrow Mechanics of soft tissues: macroscale \rightarrow nanoscale

 \Rightarrow A multiscale elasto-damaging model for collagenous fibrils:

Nanoscale: Molecular model

Nanoscale: Cross-links model

Microscale: Fibril model

 \Rightarrow Conclusions and Perspective: Back to the macroscale

Atomic Force Microscopy of an isolated molecule:

Atomic Force Microscopy of an isolated molecule:

Atomic Force Microscopy of an isolated molecule:

MECHANICS OF SOFT TISSUES: MICRO-/NANO- SCALE

Maceri, Marino, Vairo, A model for the mechanical response with damage of collagenous biostructures 19/52

MECHANICS OF SOFT TISSUES: MICRO-/NANO- SCALE

NUMBER OF CROSS-LINKS

Reduced stiffness and ductile mechanisms

Increased strength and brittle-like behaviour

Fibrils elasto-damaging mechanical behaviour affects the overall tissue response *in corpore*.

 \Rightarrow Mechanics of soft tissues: macroscale \rightarrow nanoscale

A multiscale elasto-damaging model for collagenous fibrils:

Nanoscale: Molecular model

Nanoscale: Cross-links model

Microscale: Fibril model

 \Rightarrow Conclusions and Perspective: Back to the macroscale

LOADING

Homogeneous traction

KINEMATICS

Two main deformation mechanisms:

• Molecular free-energy density and dissipative pseudopotential density:

 $\Psi_m(\varepsilon_m, \beta_m)$ Accounting for: Entropic elasticity Energetic elasticity

$$\Phi_m(\dot{arepsilon}_m,\dot{eta}_m)$$

Accounting for: **Brittle fracture**

<u>Cross-link state variables:</u> $\delta \qquad \beta_{cl} \in [0,1]$

- $\beta_{cl} \in [0,1] \quad \longleftarrow \quad \text{Damage parameter:} \\ \beta_{cl} = 0 \quad \rightarrow \text{cracked} \\ \beta_{cl} = 1 \quad \rightarrow \text{sound}$
- Cross-link free-energy and dissipative pseudopotential:

$$\mathcal{E}_{cl}(\delta,eta_{cl})$$

Assuming: Linear elastic behaviour

$$\mathcal{D}_{cl}(\dot{\delta},\dot{eta}_{cl})$$

Accounting for: **Ductile failure**

Fibril's Free-Energy density:

Maceri, Marino, Vairo, A model for the mechanical response with damage of collagenous biostructures 29/52

MICRO-NANO KINEMATIC COMPATIBILITY

Kinematic assumption:

$$\Delta L_f = n_s (\Delta L_m + \delta) \quad \rightarrow \quad \varepsilon_f = \frac{\Delta L_f}{L_f} = \frac{1}{\mu_s} \left(\varepsilon_m + \frac{\delta}{L_m} \right)$$

CONSTITUTIVE LAWS AT NANOSCALE

Molecular stress:

$$\sigma_m = \frac{\partial \Psi_m}{\partial \varepsilon_m} + \frac{\partial \Phi_m}{\partial \dot{\varepsilon}_m}$$

Nanostress due to molecular damage:

$$b_m = \frac{\partial \Psi_m}{\partial \beta_m} + \frac{\partial \Phi_m}{\partial \dot{\beta}_m}$$

Cross-link reactive force:

$$R = \frac{\partial \mathcal{E}_{cl}}{\partial \delta} + \frac{\partial \mathcal{D}_{cl}}{\partial \dot{\delta}}$$

Nanoforce due to cross-link damage:

$$B_{cl} = \frac{\partial \mathcal{E}_{cl}}{\partial \beta_{cl}} + \frac{\partial \mathcal{D}_{cl}}{\partial \dot{\beta}_{cl}}$$

CONSTITUTIVE LAWS AT MICROSCALE

Fibril stress:

$$\sigma_f = \frac{\partial \Psi_f}{\partial \varepsilon_f} + \frac{\partial \Phi_f}{\partial \dot{\varepsilon}_f}$$

Cross-links total reactive force at fibrillar level:

$$R_f = \left(\frac{\partial \Psi_f}{\partial \delta} + \frac{\partial \Phi_f}{\partial \dot{\delta}}\right) \Omega_f$$

EQUILIBRIUM AT NANOSCALE

By the Principle of Virtual Powers:
$$\mathcal{P}_{int} = \mathcal{P}_{ext}$$

 $\dot{\varepsilon}_m = \frac{dv}{dz}$
 $\mathcal{P}_{int} = N_m \left(\int_{\Omega_m} \sigma_m \dot{\varepsilon}_m \, d\Omega + \int_{\Omega_m} b_m \dot{\beta}_m \, d\Omega \right) + \lambda N_m \left(R \dot{\delta} + B_{cl} \dot{\beta}_{cl} \right)$
 $\mathcal{P}_{ext} = N_m \mathcal{F} \left[v(L_m) - v(0) \right] + \lambda N_m \mathcal{F}_{cl} \dot{\delta}$

where σ_m , b_m , R, and B_{cl} are static quantities at nanoscale, dual to kinematic variables

Equilibrium equations:
(Nanoscale)
$$\frac{d\sigma_m}{dz} = 0 \quad \text{for } z \in [0, L_m] \\
\mathcal{F} = \sigma_m A_m \\
\mathcal{F}_{cl} = R \\
b_m = 0 \\
B_{cl} = 0$$
where:
$$\frac{\mathcal{F}}{\mathcal{F}_{cl}} \xrightarrow{\mathcal{F}}{\mathcal{F}_{cl}} \xrightarrow{\mathcal{F}}{\mathcal{F}_{cl}}$$

Maceri, Marino, Vairo, A model for the mechanical response with damage of collagenous biostructures 32/52

EQUILIBRIUM AT MICROSCALE

Nanoscale state variables:

 $(\varepsilon_m, \delta, \beta_m, \beta_{cl})$

Microscale state variables:

$$(\varepsilon_f, \, \delta, \, \beta_m, \, \beta_{cl})$$

 $\dot{\varepsilon}_f = \frac{dV}{dz}$

By the Principle of Virtual Powers at the microscale:

$$\mathcal{P}_{int} = \int_{\Omega_f} \sigma_f \dot{\varepsilon}_f \, d\Omega + N_m \int_{\Omega_m} b_m \dot{\beta}_m \, d\Omega + R_f \dot{\delta} + \lambda N_m B_{cl} \dot{\beta}_{cl} \qquad \mathcal{P}_{ext} = F \left[V(L_f) - V(0) \right]$$

where σ_f and R_f are static quantities at microscale, dual to ε_f and δ .

Equilibrium equations:
(Microscale)
$$\begin{aligned}
\frac{d\sigma_f}{dz} &= 0 \quad \text{for } z \in [0, L_f] \\
F &= \sigma_f A_f \quad \text{where:} \quad \overleftarrow{F} \quad \overrightarrow{F} \quad \overrightarrow{F} \\
R_f &= 0 \\
B_{cl} &= 0
\end{aligned}$$

A BRIDGE FROM NANOSCALE TO MICROSCALE

By homogenization and compatibility:

$$\Psi_{f}(\varepsilon_{m},\delta,\beta_{m},\beta_{cl}) = \frac{\Psi_{m}(\varepsilon_{m},\beta_{m})}{\mu} + \frac{\lambda}{\mu\Omega_{m}} \mathcal{E}_{cl}(\delta,\beta_{cl}) \qquad \Longrightarrow \qquad \Psi_{f}(\varepsilon_{f},\delta,\beta_{m},\beta_{cl})$$

$$\Phi_{f}(\dot{\varepsilon}_{m},\dot{\delta},\dot{\beta}_{m},\dot{\beta}_{cl}) = \frac{\Phi_{m}(\dot{\varepsilon}_{m},\dot{\beta}_{m})}{\mu} + \frac{\lambda}{\mu\Omega_{m}} \mathcal{D}_{cl}(\dot{\delta},\dot{\beta}_{cl}) \qquad \Longrightarrow \qquad \Phi_{f}(\dot{\varepsilon}_{f},\dot{\delta},\dot{\beta}_{m},\dot{\beta}_{cl})$$

$$\sigma_m = \sigma_f \,\mu_p \qquad \qquad R_f = \left(\frac{\partial \Psi_f}{\partial \delta} + \frac{\partial \Phi_f}{\partial \dot{\delta}}\right)\Omega_f = \lambda N_m \left(R - \frac{\mathcal{F}}{\lambda}\right)$$

By equilibrium:

$$\mathcal{F} = \sigma_m A_m$$

$$\mathcal{F}_{cl} = R$$

$$F = \sigma_f A_f$$

$$\mathcal{F}_{cl} = \frac{\mathcal{F}}{\lambda} \rightarrow \sigma_m = \frac{\lambda}{A_m} R \rightarrow \frac{\partial \Psi_m}{\partial \varepsilon_m} + \frac{\partial \Phi_m}{\partial \dot{\varepsilon}_m} = \frac{\lambda}{A_m} \frac{\partial \mathcal{E}_{cl}}{\partial \delta} + \frac{\partial \mathcal{D}_{cl}}{\partial \dot{\delta}}$$

$$R_f = 0$$

 \Rightarrow Mechanics of soft tissues: macroscale \rightarrow nanoscale

A multiscale elasto-damaging model for collagenous fibrils:

> Nanoscale: Molecular model

Nanoscale: Cross-links model

Microscale: Fibril model

 \Rightarrow Conclusions and Perspective: Back to the macroscale

Free-energy density:

 $\mathbf{I}(x) = \begin{cases} 0 & \text{if } x \in [0, 1] \\ +\infty & \text{elsewhere} \end{cases}$

$$\Psi_m(\varepsilon_m,\beta_m) = \frac{\beta_m}{\uparrow} \Psi_m^{el}(\varepsilon_m) + (1-\beta_m)w_m + \mathbf{I}(\beta_m)$$

Threshold of damage activation

Dissipative pseudopotential density:

$$\Phi_{m}(\dot{\varepsilon}_{m},\dot{\beta}_{m}) = c_{m}\frac{\dot{\beta}_{m}^{2}}{2} + I_{-}(\dot{\beta}_{m}) \xleftarrow{} Irreversibility condition for damage evolution$$

It will give linear dependence for the evolution of damage

$$I_{-}(x) = \begin{cases} 0 & \text{if } x \in \mathbb{R}^{-} \\ +\infty & \text{elsewhere} \end{cases}$$

Free-energy density:

 $\mathbf{I}(x) = \begin{cases} 0 & \text{if } x \in [0, 1] \\ +\infty & \text{elsewhere} \end{cases}$

$$\Psi_m(\varepsilon_m,\beta_m) = \beta_m \Psi_m^{el}(\varepsilon_m) + (1-\beta_m)w_m + \mathbf{I}(\beta_m)$$

$$\Psi_m^{el}(\varepsilon_m) = \mathbf{e}(\varepsilon_m) - T\mathbf{s}(\varepsilon_m)$$

Maceri, Marino, Vairo, A model for the mechanical response with damage of collagenous biostructures 37/52

$$\Psi_m^{el}(\varepsilon_m) = \mathbf{e}(\varepsilon_m) - T\mathbf{s}(\varepsilon_m) : \sigma_m(\varepsilon_m^*) = \left. \frac{\partial s}{\partial \varepsilon_m} \right|_{\varepsilon_m^*} = \left. \frac{\partial e}{\partial \varepsilon_m} \right|_{\varepsilon_m^*}$$

Elastic modulus in entropic elasticity:

$$s(\varepsilon_m) : E^s(\varepsilon_m) = \frac{\partial^2 s}{\partial \varepsilon_m^2} = r_a \left\{ \frac{r_\ell}{2 \left[1 - r_\ell(\varepsilon_m + 1) \right]^3} + r_\ell \right\} \implies \begin{array}{l} \text{Recovery of the classical} \\ \text{formulation for entropic elasticity} \\ \text{(Worm-Like Chain model)} \\ r_a = \frac{k_B T}{A_m L_p} \qquad r_\ell = \frac{L_m}{L_c} \end{array}$$

Elastic modulus in energetic elasticity

$$e(\varepsilon_m) : E^e(\varepsilon_m) = \frac{\partial^2 e}{\partial \varepsilon_m^2} = \frac{\widehat{E}}{1 + e^{-m(\varepsilon_m - \varepsilon_t)}}$$

Compliant to results in Bueheler (2009) for non-linear energetic elasticity

Requirements:
$$\begin{cases} E^{s}(\varepsilon_{m}^{*}) = E^{e}(\varepsilon_{m}^{*}) \\ \frac{\partial E^{s}}{\partial \varepsilon_{m}}\Big|_{\varepsilon_{m}^{*}} = \frac{\partial E^{e}}{\partial \varepsilon_{m}}\Big|_{\varepsilon_{m}^{*}} & \underbrace{\text{Uniqueness of }}(\varepsilon_{m}^{*}, \varepsilon_{t}) \end{cases}$$

Maceri, Marino, Vairo, A model for the mechanical response with damage of collagenous biostructures 38/52

MODEL VALIDATION: ENERGETIC ELASTICITY

$$E^{e}(\varepsilon_{m}) = \frac{\partial^{2} e}{\partial \varepsilon_{m}^{2}} = \frac{\widehat{E}}{1 + e^{-m(\varepsilon_{m} - \varepsilon_{t})}}$$

Benchmarks on an isolated straight molecule (i.e, $\varepsilon_m =$ molecular <u>material</u> strain)

Maceri, Marino, Vairo, A model for the mechanical response with damage of collagenous biostructures 39/52

MODEL VALIDATION: ENTROPIC TO ENERGETIC TRANSITION

Equivalent elastic modulus of a collagen molecule:

Maceri, Marino, Vairo, A model for the mechanical response with damage of collagenous biostructures 42/52

MODEL VALIDATION: MOLECULAR BREAKAGE

Collagen strength and brittle-like mechanism are accurately reproduced $(w_m \approx 1.8 \text{ J}, c_m = 10^{-3})$

 \Rightarrow Mechanics of soft tissues: macroscale \rightarrow nanoscale

\Rightarrow A multiscale elasto-damaging model for collagenous fibrils:

Nanoscale: Molecular model

> Nanoscale: Cross-links model

Microscale: Fibril model

 \Rightarrow Conclusions and Perspective: Back to the macroscale

A MODEL FOR COLLAGENOUS FIBRILS: CROSS-LINKS MODEL

Free-energy:

the

 $\mathbf{I}(x) = \begin{cases} 0 & \text{if } x \in [0, 1] \\ +\infty & \text{elsewhere} \end{cases}$

$$\mathcal{E}_{cl} = \beta_{cl} \frac{\rho k}{2} \delta^2 + (1 - \beta_{cl}) w_{cl} + \mathbf{I}(\beta_{cl})$$

Threshold of damage activation

 ρ : parameter expressing covalent bonds density within a cross-link k: stiffness of a covalent bond

Dissipative pseudopotential:

7

$$\mathbf{I}_{-}(x) = \begin{cases} 0 & \text{if } x \in \mathbb{R}^{-} \\ +\infty & \text{elsewhere} \end{cases}$$

 \Rightarrow Mechanics of soft tissues: macroscale \rightarrow nanoscale

\Rightarrow A multiscale elasto-damaging model for collagenous fibrils:

Nanoscale: Molecular model

Nanoscale: Cross-links model

> Microscale: Fibril model

 \Rightarrow Conclusions and Perspective: Back to the macroscale

A MODEL FOR COLLAGENOUS FIBRILS: THE FULL MODEL

EQUILIBRIUM EQUATIONS:

$$G(\dot{\delta}) = \begin{cases} 1 & \text{if } \dot{\delta} \neq 0\\ p : |p| \le 1 & \text{if } \dot{\delta} = 0 \end{cases}$$

Damage evolution laws:

$$b_{m} = 0 \qquad \Longrightarrow \qquad c_{m}\dot{\beta}_{m} + \partial I(\beta_{m}) + \partial I_{-}(\dot{\beta}_{m}) \ni \left(w_{m} - \Psi_{m}^{el}(\varepsilon_{m}, T)\right)$$
$$B_{cl} = 0 \qquad \Longrightarrow \qquad c_{cl}\dot{\beta}_{cl} + \partial I(\beta_{cl}) + \partial I_{-}(\dot{\beta}_{cl}) \ni \left(w_{cl} - \frac{\rho k}{2}\delta^{2}\right)$$

A MODEL FOR COLLAGENOUS FIBRILS: THE FULL MODEL

MODEL VALIDATION:

 $\lambda \rho = 1 \leftrightarrow \beta = 15 (\rightarrow 1 \text{ covalent cross-link/molecule})$

A MODEL FOR COLLAGENOUS FIBRILS: THE FULL MODEL

MODEL RESULTS: $\lambda \rho = 1$

Nano-scale deformation mechanisms are effectively taken into account at the micro-scale 40 Molecular/Cross-links strain Fibril δ/L 35 0,3 'n Elastic modulus (GPa) Molecule 30 25 m 0,2 20 15 0,1 10 0,2 0.3 0,5 0,0 0,1 0,4 0.1 0,0 0.2 0.3 Fibril strain Fibril strain

Model takes into account the hierarchical and organized structure of collagen fibrils

 \Rightarrow Mechanics of soft tissues: macroscale \rightarrow nanoscale

 \Rightarrow A multiscale elasto-damaging model for collagenous fibrils:

> Nanoscale: Molecular model

Nanoscale: Cross-links model

Microscale: Fibril model

 \Rightarrow Conclusions and Perspective: Back to the macroscale

CONCLUSIONS AND **PERSPECTIVE**

BACK TO THE MACROSCALE

CONCLUSIONS AND PERSPECTIVE

BACK TO THE MACROSCALE

Lamellar unit degradation (-50%) is a key factor in the development of aneurismal dilatation (Zatina,1984 – Wilson,1999)

F. Maceri, M. Marino, G. Vairo (2010) *A unified multiscale mechanical model for soft collagenous tissues with regular fiber arrangement*, J. Biomechanics **43**:355-363

52/52

Thank You

7th International Meeting on UNILATERAL PROBLEMS IN STRUCTURAL ANALYSIS Palmanova, 17-19 June 2010

Franco Maceri, Michele Marino, Giuseppe Vairo

University of Rome "Tor Vergata" Department of Civil Engineering via del Politecnico, 1 - 00133 Rome – Italy E-mail: franco.maceri@lagrange.it, m.marino@ing.uniroma2.it, vairo@ing.uniroma2.it