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• Abstract
•
• The paper deals with a numerical approach for the dynamic soil-pipeline

interaction, considered as an inequality problem of structural engineering. So, the
unilateral contact conditions due to tensionless and elastoplastic
softening/fracturing behaviour of the soil as well as due to gapping caused by
earthquake excitations are taken into account.

• The numerical approach is based on a double discretization and on mathematical
programming. First, in space the Finite Element Method (FEM) is used for the
simulation of the pipeline and the unilateral contact interface, in combination with
the boundary element method (BEM) for the soil simulation. Next, with the aid of
Laplace transform, the problem equality conditions are transformed to
convolutional ones involving as unknowns the unilateral quantities only. So the
number of unknowns is significantly reduced. Then a marching-time approach is
applied and finally a nonconvex linear complementarity problem is solved in
each time-step.
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• 1. INTRODUCTION
• Dynamic soil-pipeline interaction can be considered as one of the so-called

inequality problems of structural engineering [1,2]. As wellknown [1-3],
the governing conditions of these problems are equalities as well as
inequalities. Indeed, for the case of the general dynamic soil-structure
interaction, see e.g. [3], the interaction stresses in the transmitting interface
between the structure and the soil are of compressive type only. Moreover,
due to in general nonlinear, elastoplastic, tensionless, fracturing etc. soil
behaviour, gaps can be created between the soil and the structure. Thus,
during e.g. strong earthquakes, separation and uplift phenomena are often
appeared, as the praxis has shown [4, 10-11].

• The mathematical treatment of the so-formulated inequality problems can be
obtained by the variational or hemivariational inequality approach [1,2].
Numerical approaches for some dynamic inequality problems of structural
engineering have been also presented, see e.g. [1-5].



The present paper deals with a numerical treatment for the inequality
dynamic problem of soil-pipeline interaction where second-order
geometric effects for the pile behaviour due to preexisting compressive
loads are taken also into account. In the problem formulation, the above
considerations about gapping as well as soil elastoplastic/softening
behaviour are taken into account. The proposed numerical method is
based on a double discretization and on optimization methods
(nonlinear programming). So, in space the finite element method (FEM)
coupled with the boundary element method (BEM), and in time a step-
by-step method for the treatment of convolutional conditions are used.
In each time-step a non-convex linear complementarity problem is
solved with reduced number of unknowns. Finally, the presented
procedure is applied to an example problem of dynamic pile-soil
interaction, and some concluding remarks useful for the Civil
Engineering praxis are discussed.



2.      METHOD  OF  ANALYSIS

2.1     Coupling  of  FEM  and BEM 

• Interface soil-elements: Every such interface element consists of an
elastoplastic-softening spring and a dashpot, connected in parallel
(Figure 1), and appears a compressive force r(t) at the time-moments t
only when the pipeline node comes in contact with the soil.

• Let v(t) denote the relative retirement displacement between the soil-
element end and the pipeline -node, and g(t) the existing gap. Then
the unilateral contact behaviour of the soil-pile interaction is
expressed in the compact form of the following linear
complementarity conditions:

• v ≥ 0, r ≥ 0, r.v = 0. (1)



The soil-element compressive force is in convolutional form [4]

r = S(t)*y(t), y = w - ( g + v ), (2a,b)

or in form used in Foundation Analysis [11]

r = cs(∂y/∂t) + p(y). (2c)

By * is denoted the convolution operation. 
S(t) is the dynamic stiffness coefficient for the soil and can be computed by the BEM [4]. 
Function p(y) is mathematically defined by the following, in general nonconvex and 
nonmonotone constitutive relation

p(y)  ∈ ΘP(y), (2d)

where Θ is Clarke's generalized gradient and P(.) the symbol of superpotential nonconvex 
functions [2]. So, (2d) expresses in general the elastoplastic-softening soil behaviour, where 
unloading-reloading, gapping, degrading, fracturing etc. effects are included.



• Problem conditions for the assembled soil-pipeline system, written in
matrix form according to the finite element method:

•
• M (t) ü + C (t) ù + (K + G) u(t) = f(t) + AT r(t) (3)
•
• y = ATu - ug - g - B z, r = S*y, (or r = E y), (4),(5)
•
• ω= BTr - H z - k, ω ≤ 0, z ≥ 0, zT.ω = 0, (6)
•
• u(t=0) = uo, ù (t=0) = ù o, g(t=0) = go (7)



• G is the geometric stiffness matrix depending linearly on pre-existing stress state
[6,7]; u, f are the displacement and the force vectors, respectively; ug(t) is the
vector of (possible) seismic ground displacement; A, B are kinematic
transformation matrices; z, k are the nonnegative multiplier and the unilateral
capacity vectors; and E, H are the elasticity and unilateral interaction square
matrices, symmetric and positive definite the former, positive semidefinite the latter
for the elastoplastic soil case. In the case of soil softening, some diagonal entries of
H are nonpositive [7].

•
• For the case of nonlinear pile behaviour, either the linear terms Cù and K u can be

replaced by the nonlinear matrix functions C(ù) and K(u), or the local nonlinearities
(e.g. elastoplasticity) are included in appropriate internal unilateral constraints [7-
9].

• Thus the so-formulated problem is to find (u,r,g,z) satisfying (1)-(7) when (f, ug,
• ù g, u o, go) are given.



2.2 Time discretization.  The Convolutional LCP.

• Assuming that the unilateral quantities z and T include all local 
nonlinearities and unilateral behaviour, the procedure of Liolios [9] 
can be used. So, applying the Laplace transform to (3)-(7), except 
(6)4, and after suitable elimination of unknowns and back 
transforming to time domain, we arrive eventually at

•
• ω(t) = D(t) * z(t) + d(t).  (8)
•
• Thus, at every time-moment the problem of rels. (6)2,3,4 and (8) is to 

be solved. This problem is called here Convolutional Linear 
Complementarity Problem (CLCP), has a reduced number of 
unknowns and is solved by time discretization. 



So, for the time moment tn = n.Δt, where Δt is the time step, we arrive 
eventually at a non-convex linear complementarity problem [6]:

ωn= D zn + dn,   zn ≥ 0, ωn ≤ 0,  zT.ωn = 0. (9)

Solving problem (9) by available computer codes of nonlinear 
mathematical programming [1,2,12], we compute  which of the 
unilateral constraints are active and which not in each time-step Δt. 
Due to soil softening, matrix D is not strictly positive definite in general. 
But as numerical experiments have shown, in most civil engineering 
applications of soil-pile interaction this matrix is P-copositive. Thus the 
existence of a solution is assured [7].



3. NUMERICAL EXAMPLE
An empty horizontal steel circular pipeline of length L = 200 m,
outside diameter 1 m, thickness 1.5 cm, elastic modulus 21*107

KN/m2 and yield stress 50 KN/cm2 is considered. As depicted in
Figure 1, the pipeline is clamped by the two anchor blocks A and B
imbedded into a rock soil. The soil, into which the horizontal pipeline
is buried, has an elastoplastic behaviour as in Figure 2 and was
initially the same along the length L = 200 m. Due to environmental
effects, the soil consists finally of two regions: the first (I), the
degraded one, is soft with a shear modulus Gi = 5000 KN/m2, the
second (II) remains hard with a shear modulus Gii = 100000 KN/m2.
The parameters for the elastoplastic behaviour in Figure 2 are taken
to be a = pu.b, b = 100 m-1, where it is pu = 100 KN/m2 for the soft
region (I) and pu = 2000 KN/m2 for the hard region (II).



Further, the seismic ground velocity excitation is assumed to
be a sinusoidal horizontal wave propagation parallel to the
pipeline axis (Figure 1), with mean speed vg= 0.4 km/sec in
the soft region (I) and vg = 0.8 km/sec in the hard one (II),
frequency fg = 10 rad/sec, duration T = 2 π /fg and
maximum ground displacement w0 = 5 cm. Thus the
horizontal ground motion, perpendicular to the pipeline axis
x, is expressed mathematically by the following relation (6),
where H(t) is the Heaviside function:

ug (x,t)  =  w0 sin(t-x/vg) .{H(t-x/vg)-H(t-x/vg -T)}. (6)



Figure 1:  Soil-pipeline system, horizontal wave travelling ground 
motion and soil-pipeline interaction modelization.



Figure 2: Unilateral, degradating soil behaviour in loading-unloading 
with remaining gaps.



Some response results from the ones obtained by applying the 
herein presented numerical procedure are indicatively 
reported. 
So  they are shown:

in  Figure 3:  Gaps along the pipeline at times t1 = 0.6 sec and 
t2 = 2.1 sec,
in Figure 4: Soil-pressure distribution at the time t1 = 0.6 sec.



Figure 3:  Gaps along the pipeline at times t1 = 0.6 sec and t2 = 2.1 sec



Figure 4: Soil-pressure distribution at the time t1 = 0.6 sec



• 4. CONCLUDING REMARKS
•
• As the above indicative results of the numerical example show,

unilateral contact effects due to tensionless soil capacity and to
gapping may be significant and have to be taken into account for the
dynamic soil-pipelinee interaction. Also environmental effects can
cause degradation to soil behaviour.

• All these effects can be numerically estimated by the herein presented
procedure, which is realizable on computers by using existent codes
of coupling the FEM and BEM as well as optimization algorithms.
Thus, the presented approach can be useful in the praxis for the
earthquake resistant construction, design and control of piles.
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