

A Multi-level interface model taking into account unilateral conditions and crack evolution

Frédéric Lebon¹ Amna Rekik²

¹Aix-Marseille University CNRS LMA

²Orléans University PRISME Institute

June 17, 2010

Outline

3 Numerical results and identification

Lebon and Rekik A Multi-level interface model

Bibliography

- G. W. Postma, Wave propagation in a stratified medium. Geophysics, 20, 780–806, 1955.
- M. Kachanov. Solids with cracks and non-spherical pores: proper parameters of defect density and effective elastic properties.
 Int. J. of Fracture, 97, 1–32 1999.
- A. Rekik, F. Lebon Homogenization methods for interface modeling in damaged masonry.
 Comp. and Struct., 2010.
- A. Rekik, F. Lebon Identification of the representative crack length evolution in a multi-level interface model for quasi-brittle masonry.
 Int. J. Sol. Struct., 2010.

Introduction

- Modeling interfaces in modern masonries
- Micro-scale effects
- Homogenization
- Asymptotic theories
- FEM implementation (CAST3M, LMGC90)

Motivations

Modeling brick masonries

- 4 聞 と 4 臣 と 4 臣 と

Motivations

Modelling masonries at local level

- Small structures
- Assembly of bricks, mortar, interfaces (multibody mechanics)
- Mortar and bricks are deformable bodies

Hypotheses

First (Strong) Hypothesis

The brick-mortar interphase is a mixture of the two materials.

Second (Strong) Hypothesis

To simplify, the interface is a stratified.

Third Hypothesis

The interface is cracked.

- **→** → **→**

Hypotheses

Fourth Hypothesis

The interface is thin.

Fifth Hypothesis

There is no penetration.

Sixth Hypothesis

The crack length increases.

Methodology: 5-step model

Obtain normal and tangential stiffnesses.

Step 4 Unilateral conditions Step 5 Crack evolution

< 🗇 >

(신문) (신문)

э

First step: stratified with two phases

Mechanical properties of the three-fold masonry constituents

Young's moduli (MPa) of full brick	9438
Poisson ratio of full brick	0.13
Young's moduli (MPa) of hollow brick	6059
Poisson ratio of hollow brick	0.13
Young's moduli (MPa) of mortar	4000
Poisson ratio of mortar	0.3

Lebon and Rekik

A Multi-level interface model

Compliance tensor

Full bricks

	/ 1.478	-0.271	-0.348	0	0	0 \
	-0.271	1.478	-0.348	0	0	0
č ⁰ 10−4	-0.348	-0.348	1.639	0	0	0
$S \equiv 10$	0	0	0	4.444	0	0
	0	0	0	0	4.444	0
	0	0	0	0	0	3.499 /

Hollow bricks

$$\tilde{S}^{0} = 10^{-4} \begin{pmatrix} 1.973 & -0.396 & -0.456 & 0 & 0 & 0 \\ -0.396 & 1.973 & -0.456 & 0 & 0 & 0 \\ -0.456 & -0.456 & 1.985 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5.115 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5.115 & 0 \\ 0 & 0 & 0 & 0 & 5.115 & 0 \\ 0 & 0 & 0 & 0 & 5.115 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4.740 \end{pmatrix}$$

Second step: Kachanov theory

Second step: Kachanov theory (continue)

 $\phi = 0$, $A = eL_0$

 $B_{nn} = C(1+D)I$ and $B_{tt} = C(1-D)I$

$$E_{1} = E_{1}^{0} E_{3} = E_{3}^{0} / (1 + 2\rho B_{nn} E_{3}^{0})$$

$$G_{13} = G_{13}^{0} / (1 + \rho B_{tt} G_{13}^{0})$$

$$\nu_{13} = \nu_{13}^{0}$$

Second step: Kachanov theory (an example)

$$C_{3333} = \frac{K_1 e + K_2 l^3}{K_3 e^2 + K_4 e l^3 + K_5 l^6}$$

$$K_i(L_0, E_1, E_3, G_{13}, \nu_{13}, ...)$$

- ∢ ≣ ▶

A.

∃ >

Third step: Asymptotic theory - A formal result

We introduce some notations

$$U = \{v/v \in [H^{1}(\Omega)]^{3}; v = 0 \text{ on } \Gamma_{0}\}.$$

$$V = \{v \in [H^{1}(\Omega^{+} \cup \Omega^{-})]^{3}; v = 0 \text{ on } \Gamma_{0}\}.$$

$$X = [L^{2}(\Omega)]^{3}$$

$$A^{e}(u, v) = \int_{\Omega_{e}} ae(u)e(v) dx + \int_{B_{e}} be(u)e(v) dx$$

$$I(u) = \int_{\Omega} \varphi.u dx + \int_{\Gamma_{1}} g.u ds, \text{ with } \varphi \in [L^{2}(\Omega)]^{3} \text{ and } g \in [L^{2}(\Gamma_{1})]^{3}.$$

$$J^{e}(v) = \frac{1}{2}A^{e}(v, v) - I(v).$$

$$F^{e}(u) = \begin{cases} \frac{1}{2}A^{e}(u, u) & \text{if } u \in U \\ +\infty & \text{if } u \in X \setminus U \end{cases}$$

Third step: Asymptotic theory - A formal result

Theorem

Under the previous assumptions, $F^e \Gamma$ -converges to F^0 at point u with

$$F^{0}(u) = \begin{cases} \frac{1}{2} \int_{\Omega} ae(u)e(v) \ dx + \frac{1}{2} \int_{S} \overline{b}([u] \otimes_{s} n)([u] \otimes_{s} n) \ ds \\ if \ u \in V \\ +\infty \ if \ not \end{cases}$$

The term [u] is the jump of displacement along the interface S. We can observe that the jump along the interface S is given by:

$$\sigma n = \overline{b}([u] \otimes_s n)n, \ \overline{b} = \lim b/e$$

Proof: generalization of a result by Licht-Michaille, 1996.

Third step: Asymptotic theory

$$\sigma n = C(I,...)[u]$$

$$C_{3333} \to C_N = \frac{L_0}{2C(1+D) I^3} C_{1313} \to C_T = \frac{L_0}{4C(1-D) I^3}$$

э

< 17 ▶

(*) *) *) *)

Third step: Asymptotic theory

Full Bricks $C_N = 242365/l^3 (N/mm^2)$ and $C_T = 127600/l^3 (N/mm^2)$

Hollow Bricks $C_N = 200396/l^3 (N/mm^2)$ and $C_T = 100490/l^3 (N/mm^2)$

A B M A B M

Fourth step: Unilateral contact

Let F be the density of the contact forces.

$$F = F_n n^b + F_t$$
, with $F_n = F.n^b$

Locally, the unilateral contact is given by the following relations

$$[u_n] \ge 0, \quad F_n - C_N[u_n] \ge 0, \quad \text{and} \quad (F_n - C_N[u_n])[u_n] = 0$$

Model presentation

Fifth step: Crack evolution

æ

Numerical results

- Without confinement (Fouchal)
- With confinement (Gabor)
- RILEM test (diagonal compression)

Numerical results: triplet of full bricks

Numerical results: triplet of full bricks

Lebon and Rekik A Multi-level interface model

Numerical results: triplet of hollow bricks

test-1

э

test-2

test-3

Numerical results: Identification

Numerical results: confined small prism

Various confinement pressures

< □ > < 同 >

∃ >

Numerical results: confined small prism

Э

Numerical results: confined small prism

Numerical results: Identification

confining stress σ (MPa)	$I_u (\mu m)$	$e_r(I_u)$ (%)		
0.4	1.57	2.5		
0.6	1.53	5		
0.8	1.8	11.1		
1.2	1.53 🔍	□ → < 25 < ≥ >	★≣≯	·是
Lebon and Rekik	A Multi level inte	rface model	, ,	

Numerical results: Rilem test

Lebon and Rekik A Multi-level interface model

э

イロト 不同 とうほう 不同 とう

Unilateral contact

unilateral contact condition	$I_u (\mu m)$	$e_r(I_u)$ (%)
with	1.61	3
without	1.728	4

Table: Identified ultimate representative crack length and the corresponding relative errors obtained on a diagonally compressed wall with and without a unilateral contact condition

Conclusion

- Model of interface taking into account fissuration evolution
- Implementation (Cast3M)
- Comparison with experimental data and identification

Five improvements

- Dynamics (collaboration F. Dubois, Montpellier)
- 3D (coupling in-plane and out-of-plane)
- Improve Kachanov model
- Coupling surface and volume damage
- Evolution of fissure length

Thank you for your attention !