Qualitative analysis of solutions to discrete contact problems with Coulomb friction

J. Haslinger
jointly with
V. Janovský and T. Ligurský

Charles University, Prague

Outline

(i) uniqueness results - dependence on the mesh norm and the coefficient of friction;
(ii) existence of local Lipschitz continuous branches of solutions;
(iii) piecewise-smooth Moore-Penrose continuation method; (iv) elementary examples.

3D-contact problems with orthotropic Coulomb friction and solution-dependent coefficients of friction

$$
\Omega \subset \mathbb{R}^{3}, \partial \Omega=\bar{\Gamma}_{u} \cup \bar{\Gamma}_{p} \cup \bar{\Gamma}_{c}
$$

Classical formulation

- (equilibrium equations)

$$
\begin{aligned}
& \frac{\partial \sigma_{i j}}{\partial x_{j}}(\boldsymbol{u})+F_{i}=0 \quad \text { in } \Omega, i=1,2,3, \\
& \sigma_{i j}(\boldsymbol{u})=c_{i j k \mid}, \varepsilon_{k l}(\boldsymbol{u}) ; \\
& \boldsymbol{u}=\mathbf{0} \quad \text { on } \Gamma_{u} ; \\
& -\sigma_{i j}(\boldsymbol{u}) \nu_{j}=P_{i} \quad \text { on } \Gamma_{P}, i=1,2,3 ;
\end{aligned}
$$

- (unilateral conditions)

$$
\begin{aligned}
& u_{\nu}:=\boldsymbol{u} \cdot \boldsymbol{\nu} \leq 0, \quad T_{\nu}(\boldsymbol{u}):=\sigma_{i j}(\boldsymbol{u}) \nu_{i} \nu_{j} \leq 0, \\
& T_{\nu}(\boldsymbol{u}) u_{\nu}=0 \quad \text { on } \Gamma_{c} ;
\end{aligned}
$$

- (orthotropic Coulomb friction law)
$x \in \Gamma_{c} \mapsto \boldsymbol{t}_{1}(x), \boldsymbol{t}_{2}(x) \ldots$ principal orthotropic axes $\mathcal{F}_{i}:=\mathcal{F}_{i}\left(x,\left\|\boldsymbol{u}_{t}(x)\right\|\right), i=1,2 \ldots$ coefficients of friction in the direction $\boldsymbol{t}_{i}, \mathcal{F}=\operatorname{diag}\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$

$$
\begin{aligned}
\boldsymbol{u}_{t}(x)=\mathbf{0} & \Longrightarrow\left\|\mathcal{F}^{-1}(x, 0) \boldsymbol{T}_{t}(\boldsymbol{u})(x)\right\| \leq-T_{\nu}(\boldsymbol{u})(x), \quad x \in \Gamma_{c}, \\
\boldsymbol{u}_{t}(x) \neq \mathbf{0} & \Longrightarrow \mathcal{F}^{-1}\left(x,\left\|\boldsymbol{u}_{t}(x)\right\| \boldsymbol{T}_{t}(\boldsymbol{u})(x)\right. \\
& =T_{\nu}(\boldsymbol{u})(x) \frac{\mathcal{F}\left(x,\left\|\boldsymbol{u}_{t}(x)\right\|\right) \boldsymbol{u}_{t}(x)}{\left\|\mathcal{F}\left(x,\left\|\boldsymbol{u}_{t}(x)\right\|\right) \boldsymbol{u}_{t}(x)\right\|}, \quad x \in \Gamma_{c} .
\end{aligned}
$$

Weak formulation

$$
\begin{aligned}
& \boldsymbol{V}=\left\{\boldsymbol{v} \in\left(H^{1}(\Omega)\right)^{3} \mid \boldsymbol{v}=\mathbf{0} \text { on } \Gamma_{u}\right\} \\
& \boldsymbol{K}=\left\{\boldsymbol{v} \in \boldsymbol{V} \mid v_{\nu} \leq 0 \text { on } \Gamma_{c}\right\} \\
& X_{\nu}=\left\{\varphi \in L^{2}\left(\Gamma_{c}\right) \mid \exists \boldsymbol{v} \in \boldsymbol{V}: \varphi=v_{\nu} \text { on } \Gamma_{c}\right\}, \quad X_{\nu}^{\prime}=\text { dual of } X_{\nu} \\
& X_{t+}=\left\{\varphi \in L^{2}\left(\Gamma_{c}\right) \mid \exists \boldsymbol{v} \in \boldsymbol{V}: \varphi=\left\|\boldsymbol{v}_{t}\right\| \text { on } \Gamma_{c}\right\} \\
& \Lambda_{\nu}=\left\{\mu_{\nu} \in X_{\nu}^{\prime} \mid\left\langle\mu_{\nu}, v_{\nu}\right\rangle_{\nu} \leq 0 \forall \boldsymbol{v} \in \boldsymbol{K}\right\} \\
& \mathbf{a}: \boldsymbol{V} \times \boldsymbol{V} \rightarrow \mathbb{R}^{1}, \quad \ell: \boldsymbol{V} \rightarrow \mathbb{R}^{1}, \quad j: X_{t+} \times \Lambda_{\nu} \times \boldsymbol{V} \rightarrow \mathbb{R}^{1} \\
& a(\boldsymbol{u}, \boldsymbol{v}):=\int_{\Omega} c_{i j k l} \varepsilon_{i j}(\boldsymbol{u}) \varepsilon_{k l}(\boldsymbol{v}) \mathrm{d} x, \quad \boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{V} \\
& \ell(\boldsymbol{v}):=\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{v} \mathrm{d} x+\int_{\Gamma_{P}} \boldsymbol{P} \cdot \boldsymbol{v} \mathrm{~d} s, \quad \boldsymbol{F} \in\left(L^{2}(\Omega)\right)^{3}, \boldsymbol{P} \in\left(L^{2}\left(\Gamma_{P}\right)\right)^{3} \\
& j\left(\varphi, g, \boldsymbol{v}_{t}\right):=\left\langle g,\left\|\mathcal{F}(\varphi) \boldsymbol{v}_{t}\right\|\right\rangle_{\nu}, \quad g \in \Lambda_{\nu}, \varphi \in X_{t+}, \boldsymbol{v} \in \boldsymbol{V}
\end{aligned}
$$

Definition A function $\boldsymbol{u} \in \boldsymbol{K}$ is said to be a weak solution to our problem iff

$$
\begin{align*}
& a(\boldsymbol{u}, \boldsymbol{v}-\boldsymbol{u})+j\left(\left\|\boldsymbol{u}_{t}\right\|,-T_{\nu}(\boldsymbol{u}), \boldsymbol{v}_{t}\right)-j\left(\left\|\boldsymbol{u}_{t}\right\|,-T_{\nu}(\boldsymbol{u}), \boldsymbol{u}_{t}\right) \\
& \geq \ell(\boldsymbol{v}-\boldsymbol{u}) \quad \forall \boldsymbol{v} \in \boldsymbol{K} \tag{P}
\end{align*}
$$

Fixed-point formulation
Let $(\varphi, g) \in X_{t+} \times \Lambda_{\nu}$ be given and define the auxiliary problem:

Find $\boldsymbol{u}:=\boldsymbol{u}(\varphi, g) \in \boldsymbol{K}$ such that

$$
a(\boldsymbol{u}, \boldsymbol{v}-\boldsymbol{u})+j\left(\varphi, g, \boldsymbol{v}_{t}\right)-j\left(\varphi, g, \boldsymbol{u}_{t}\right)
$$

Let $\Psi: X_{t+} \times \Lambda_{\nu} \rightarrow X_{t+} \times \Lambda_{\nu}$ be defined by

$$
\Psi(\varphi, g)=\left(\left\|\boldsymbol{u}_{t}\right\|,-T_{\nu}(\boldsymbol{u})\right), \quad(\varphi, g) \in X_{t+} \times \Lambda_{\nu}
$$

Then $\boldsymbol{u} \in \boldsymbol{K}$ solves (\mathcal{P}) iff $\left(\left\|\boldsymbol{u}_{t}\right\|,-T_{\nu}(\boldsymbol{u})\right)$ is a fixed point of Ψ.

Mixed formulation of $\mathcal{P}(\varphi, g)$

Find $\left(\boldsymbol{u}, \lambda_{\nu}\right) \in \boldsymbol{V} \times \Lambda_{\nu}$ such that

$$
\left.\begin{array}{c}
a(\boldsymbol{u}, \boldsymbol{v}-\boldsymbol{u})+j\left(\varphi, g, \boldsymbol{v}_{t}\right)-j\left(\varphi, g, \boldsymbol{u}_{t}\right) \\
\geq \ell(\boldsymbol{v}-\boldsymbol{u})-\left\langle\lambda_{\nu}, \boldsymbol{v}_{\nu}-u_{\nu}\right\rangle_{\nu} \quad \forall \boldsymbol{v} \in \boldsymbol{V}, \\
\left\langle\mu_{\nu}-\lambda_{\nu}, u_{\nu}\right\rangle_{\nu} \leq 0 \quad \forall \mu_{\nu} \in \Lambda_{\nu} .
\end{array}\right\}
$$

Since $\lambda_{\nu}=-T_{\nu}(\boldsymbol{u})$ on Γ_{c}, one has

$$
\Psi(\varphi, g)=\left(\left\|\boldsymbol{u}_{t}\right\|, \lambda_{\nu}\right)
$$

Discrete contact problems with Coulomb friction

Based on an appropriate discretization of the mapping Ψ.
$\mathcal{T}_{h}^{\Omega} \ldots$ partition of $\bar{\Omega}$ into finite elements $T, h=$ norm of \mathcal{T}_{h}^{Ω} $\mathcal{T}_{H}^{\Gamma_{c}} \ldots$ partition of $\bar{\Gamma}_{c}$ into finite elements $R, H=$ norm of $\mathcal{T}_{H}{ }^{{ }_{c}}$

$$
\begin{aligned}
& V^{h}=\left\{v^{h} \in C(\bar{\Omega}) \mid v^{h}{ }_{\left.\right|_{T}} \in P_{k}(T) \forall T \in \mathcal{T}_{h}^{\Omega}, v^{h}=0 \text { on } \Gamma_{u}\right\} \\
& L^{H}=\left\{\mu^{H} \in L^{2}\left(\Gamma_{c}\right) \mid \mu^{H}{ }_{\left.\right|_{R}} \in P_{s}(R) \forall R \in \mathcal{T}_{H}^{\Gamma_{c}}\right\} \\
& V^{h}=\left(V^{h}\right)^{3} \\
& W^{h}=V^{h}{\mid \Gamma_{c}}, \quad W_{+}^{h}=\left\{\varphi^{h} \in W^{h} \mid \varphi^{h} \geq 0 \text { on } \Gamma_{c}\right\} \\
& \Lambda_{\nu}^{H}=\left\{\mu^{H} \in L^{H} \mid \mu^{H} \geq 0 \text { on } \Gamma_{c}\right\}
\end{aligned}
$$

The couple ($\boldsymbol{V}^{h}, L^{H}$) has to satisfy the following condition:

$$
\begin{equation*}
\mu^{H} \in L^{H} \&\left(\mu^{H}, v_{\nu}^{h}\right)_{0, \Gamma_{c}}=0 \forall \boldsymbol{v}^{h} \in \boldsymbol{V}^{h} \quad \Longrightarrow \quad \mu^{H}=0 . \tag{1}
\end{equation*}
$$

Mixed finite element discretization of $\mathcal{M}(\varphi, g)$
For $\varphi^{h} \in W_{+}^{h}, g^{H} \in \Lambda_{\nu}^{H}$ given define the problem:

Find $\left(\boldsymbol{u}^{h}, \lambda_{\nu}^{H}\right) \in \boldsymbol{V}^{h} \times \Lambda_{\nu}^{H}$ such that
$a\left(\boldsymbol{u}^{h}, \boldsymbol{v}^{h}-\boldsymbol{u}^{h}\right)+j\left(\varphi^{h}, g^{H}, \boldsymbol{v}_{t}^{h}\right)$
$-j\left(\varphi^{h}, g^{H}, \boldsymbol{u}_{t}^{h}\right) \geq \ell\left(\boldsymbol{v}^{h}-\boldsymbol{u}^{h}\right)$
$\left(\mathcal{M}_{h H}\left(\varphi^{h}, g^{H}\right)\right)$
$-\left(\lambda_{\nu}^{H}, v_{\nu}^{h}-u_{\nu}^{h}\right)_{0, \Gamma_{c}} \quad \forall \boldsymbol{v}^{h} \in \boldsymbol{V}^{h}$,
$\left(\mu_{\nu}^{H}-\lambda_{\nu}^{H}, u_{\nu}^{H}\right)_{0, \Gamma_{c}} \leq 0 \quad \forall \mu_{\nu}^{H} \in \Lambda_{\nu}^{H}$.

Proposition (1) $\Longrightarrow\left(\mathcal{M}_{h H}\left(\varphi^{h}, g^{H}\right)\right)$ has a unique solution for any $\left(\varphi^{h}, g^{H}\right) \in W_{+}^{h} \times \Lambda_{\nu}^{H}$.

Assumptions

- the vector field $x \mapsto\left(\boldsymbol{t}_{1}(x), \boldsymbol{t}_{2}(x)\right), x \in \Gamma_{c}$, is sufficiently smooth so that

$$
\left.\begin{array}{rl}
\boldsymbol{v}_{t}^{h}=\left(v_{t_{1}}^{h}, v_{t_{2}}^{h}\right) & \left(H^{1}\left(\Gamma_{c}\right)\right)^{2} \quad \forall \boldsymbol{v}^{h} \in \boldsymbol{V}^{h}, \\
\exists c_{t}>0 \text { independent of } \boldsymbol{v}^{h} \in \boldsymbol{V}^{h} \text { and } h>0: \tag{2}\\
\left\|\boldsymbol{v}_{t}^{h}\right\|_{1, \Gamma_{c}} \leq c_{t}\left\|\boldsymbol{v}^{h}\right\|_{1, \Gamma_{c}} \quad \forall \boldsymbol{v}^{h} \in \boldsymbol{V}^{h}
\end{array}\right\}
$$

- $\exists r_{h} \in \mathcal{L}\left(H^{1}\left(\Gamma_{c}\right), W^{h}\right)$ such that

$$
\left.\begin{array}{c}
\left\|\varphi-r_{h} \varphi\right\|_{0, \Gamma_{c}} \leq c_{r} h_{\Gamma_{c}}\|\varphi\|_{1, \Gamma_{c}} \quad \forall \varphi \in H^{1}\left(\Gamma_{c}\right) \tag{3}\\
\varphi \in H^{1}\left(\Gamma_{c}\right), \varphi \geq 0 \text { on } \Gamma_{c} \Longrightarrow r_{h} \varphi \in W_{+}^{h}
\end{array}\right\}
$$

where $h_{\Gamma_{c}}=$ norm of $\left.\mathcal{T}_{h}^{\Omega}\right|_{\bar{\Gamma}_{c}}$ and $c_{r}>0$ does not depend on φ and $h_{\Gamma_{c}}$.

- the satisfaction of the following inverse inequalities for elements of $\left.\boldsymbol{V}^{h}\right|_{r_{c}}$ (see [Ciarlet, 1978]):

$$
\left.\begin{array}{rl}
\left\|\boldsymbol{v}^{h}\right\|_{1, \Gamma_{c}} \leq c_{\mathrm{inv}}^{(1,0)} h_{\Gamma_{c}}^{-1}\left\|\boldsymbol{v}^{h}\right\|_{0, \Gamma_{c}} & \forall \boldsymbol{v}^{h} \in \boldsymbol{V}^{h}, \tag{4}\\
\left\|\boldsymbol{v}^{h}\right\|_{\infty, \Gamma_{c}} \leq c_{\mathrm{inv}}^{(\infty)} h_{\Gamma_{c}}^{-1}\left\|\boldsymbol{v}^{h}\right\|_{0, \Gamma_{c}} & \forall \boldsymbol{v}^{h} \in \boldsymbol{V}^{h}
\end{array}\right\}
$$

where $c_{\text {inv }}^{(1,0)}, c_{\text {inv }}^{(\infty)}>0$ do not depend on $h_{\Gamma_{c}}$ and $\boldsymbol{v}^{h} \in \boldsymbol{V}^{h}$

$$
\left.\begin{array}{rl}
\mathcal{F}_{1}, \mathcal{F}_{2} \in & C\left(\Gamma_{c} \times \mathbb{R}_{+}^{1}\right) \\
0<\mathcal{F}_{\min } \leq \mathcal{F}_{i}(x, \xi) \leq & \mathcal{F}_{\max }, \tag{5}\\
& i=1,2, \forall(x, \xi) \in \Gamma_{c} \times \mathbb{R}_{+}^{1}
\end{array}\right\}
$$

Let $\Psi_{h H}: W_{+}^{h} \times \Lambda_{\nu}^{H} \rightarrow W_{+}^{h} \times \Lambda_{\nu}^{H}$ be defined by

$$
\Psi_{h H}\left(\varphi^{h}, g^{H}\right)=\left(r_{h}\left\|\boldsymbol{u}_{t}^{h}\right\|, \lambda_{\nu}^{H}\right), \quad\left(\varphi^{h}, g^{H}\right) \in W_{+}^{h} \times \Lambda_{\nu}^{H} .
$$

Definition A function $\boldsymbol{u}^{h} \in \boldsymbol{V}^{h}$ is said to be a solution to the discrete problem iff the couple $\left(r_{h}\left\|\boldsymbol{u}_{t}^{h}\right\|, \lambda_{\nu}^{H}\right)$ is a fixed point of $\Psi_{h H}$.

Existence of solutions to discrete problems
Let
$\left\|\left(\varphi^{h}, \mu^{H}\right)\right\|_{W^{h} \times L^{H}}:=\left\|\varphi^{h}\right\|_{0, \Gamma_{c}}+\left\|\mu^{H}\right\|_{-1 / 2, h}, \quad\left(\varphi^{h}, \mu^{H}\right) \in W^{h} \times L^{H}$,
where

$$
\left\|\mu^{H}\right\|_{-1 / 2, h}=\sup _{\mathbf{0} \neq \boldsymbol{v}^{h} \in \boldsymbol{V}^{h}} \frac{\left(\mu^{H}, v_{\nu}^{h}\right)_{0, \Gamma_{c}}}{\left\|\boldsymbol{v}^{h}\right\|_{1, \Omega}} .
$$

Proposition Let (2)-(5) be satisfied. Then $\Psi_{h H}$ has at least one fixed point in $W_{+}^{h} \times \Lambda_{\nu}^{H}$.

Uniqueness of the solutions

Denote

$$
\begin{aligned}
L & =\max _{i=1,2}\left\{\sup _{x \in \Gamma_{c}, \xi>0}\left|\frac{\partial \mathcal{F}_{i}(x, \xi)}{\partial \xi}\right|\right\}, \\
\kappa(\mathcal{F}) & =\sup _{x \in \Gamma_{c}, \xi>0} \frac{\max \left\{\mathcal{F}_{1}(x, \xi), \mathcal{F}_{2}(x, \xi)\right\}}{\min \left\{\mathcal{F}_{1}(x, \xi), \mathcal{F}_{2}(x, \xi)\right\}}, \quad \mathcal{F}=\operatorname{diag}\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right) .
\end{aligned}
$$

Then $\Psi_{h H}$ is Lipschitz continuous in $W_{+}^{h} \times \Lambda_{\nu}^{H} \cap B$, where B is a ball in $W^{h} \times L^{H}$ with a sufficiently large radius:

$$
\begin{gathered}
\exists C>0: \quad\left\|\Psi_{h H}\left(\varphi^{h}, g^{H}\right)-\Psi_{h H}\left(\bar{\varphi}^{h}, \bar{g}^{H}\right)\right\|_{W^{h} \times L^{H}} \\
\leq C\left\|\left(\varphi^{h}, g^{H}\right)-\left(\bar{\varphi}^{h}, \bar{g}^{H}\right)\right\|_{W^{h} \times L^{H}} \\
\forall\left(\varphi^{h}, g^{H}\right),\left(\bar{\varphi}^{h}, \bar{g}^{H}\right) \in W_{+}^{h} \times \Lambda_{\nu}^{H} \cap B \\
C=\max \left\{C_{1}\left(\mathcal{F}_{\max }, H\right), C_{2}\left(L, \kappa(\mathcal{F}), H, h_{\Gamma_{c}}\right)\right\}
\end{gathered}
$$

It holds:

(a) $C_{1}\left(\mathcal{F}_{\max }, H\right) \rightarrow 0$ if $\mathcal{F}_{\text {max }} \rightarrow 0+$ for any $H>0$ fixed, $C_{2}\left(L, \kappa(\mathcal{F}), H, h_{\Gamma_{c}}\right) \rightarrow 0$ if $L \rightarrow 0+$ for any $H, h_{\Gamma_{c}}$ fixed and $\kappa(\mathcal{F})$ bounded;
(b) if \mathcal{F} does not depend on $\left\|\boldsymbol{u}_{t}^{h}\right\|$ (i.e. $L \equiv 0$) then $C_{2} \equiv 0$;
(c) if \mathcal{F} is fixed then

$$
\begin{aligned}
C_{1}\left(\mathcal{F}_{\max }, H\right) & \sim H^{-1 / 2} \\
C_{2}\left(L, \kappa(\mathcal{F}), H, h_{\Gamma_{c}}\right) & \sim\left(H h_{\Gamma_{c}}\right)^{-1 / 2}
\end{aligned}
$$

provided that the Babuška-Brezzi condition for $\left\{\boldsymbol{V}^{h}, L^{H}\right\}$ is satisfied:

$$
\sup _{\mathbf{0} \neq \boldsymbol{v}^{h} \in \boldsymbol{V}^{h}} \frac{\left(\mu^{H}, v_{\nu}^{h}\right)_{0, \Gamma_{c}}}{\left\|\boldsymbol{v}^{h}\right\|_{1, \Omega}} \geq \beta\left\|\mu^{H}\right\|_{*, \Gamma_{c}} \quad \forall \mu^{H} \in L^{H}
$$

where $\beta>0$ does not depend on h, H and

$$
\left\|\mu^{H}\right\|_{*, \Gamma_{c}}=\sup _{0 \neq \boldsymbol{v} \in \boldsymbol{V}} \frac{\left(\mu^{H}, v_{\nu}\right)_{0, \Gamma_{c}}}{\|\boldsymbol{v}\|_{1, \Omega}}
$$

Consequence

$\Psi_{h H}$ is contractive provided that $\mathcal{F}_{\text {max }}$ and L are small enough. However, the bounds $\mathcal{F}_{\text {crit }}$ and $L_{\text {crit }}$ are mesh-dependent.

Non-uniqueness of the solution

[Haslinger, Kučera, Vlach, 2008]

$$
\begin{aligned}
\Omega & =(0,10) \times(0,1) \times(0,1)[\mathrm{m}] \\
E & =21.19 \mathrm{e} 10[\mathrm{~Pa}, \sigma=0.277 \\
\mathcal{F} & =\operatorname{diag}(\mathcal{F}, \mathcal{F}), \mathcal{F}:=\mathcal{F}\left(\left\|\boldsymbol{u}_{t}(x)\right\|\right)
\end{aligned}
$$

The graph of \mathcal{F}

Geometry of the problem

$$
\mathcal{F}_{\zeta}=\zeta \mathcal{F}
$$

$\zeta=1.4$

Normal displacements

Normal stress
$\zeta=1.4$

The norm of the tangential displacements

The slip bound $\mathcal{F}_{\zeta}\left(\left\|\boldsymbol{u}_{t}\right\|\right)\left|T_{\nu}(\boldsymbol{u})\right|$

The graph of $\mathcal{F}\left(\left\|\boldsymbol{u}_{t}\right\|\right)$

The slip bound $\mathcal{F}_{\zeta}\left(\left\|\boldsymbol{u}_{t}\right\|\right)\left|T_{\nu}(\boldsymbol{u})\right|$

Existence of local Lipschitz continuous branches of solutions

Algebraic formulation (2D contact problems with isotropic
Coulomb friction with the coefficient $\mathcal{F}:=\mathcal{F}(x)$)
Find $\left(\boldsymbol{u}, \boldsymbol{\lambda}_{\nu}, \boldsymbol{\lambda}_{t}\right) \in \mathbb{R}^{n} \times \boldsymbol{\Lambda}_{\nu} \times \boldsymbol{\Lambda}_{t}\left(\boldsymbol{\lambda}_{\nu}\right)$ such that

$$
\begin{equation*}
\boldsymbol{A} \boldsymbol{u}=\boldsymbol{f}-\boldsymbol{B}_{\nu}^{\top} \boldsymbol{\lambda}_{\nu}-\boldsymbol{B}_{t}^{\top} \boldsymbol{F} \boldsymbol{\lambda}_{t}, \tag{A}
\end{equation*}
$$

$$
\left(\mu_{\nu}-\boldsymbol{\lambda}_{\nu}\right) \cdot \boldsymbol{B}_{\nu} \boldsymbol{u}+\boldsymbol{F}\left(\mu_{t}-\boldsymbol{\lambda}_{t}\right) \cdot \boldsymbol{B}_{t} \boldsymbol{u} \leq 0
$$

$$
\forall\left(\boldsymbol{\mu}_{\nu}, \boldsymbol{\mu}_{t}\right) \in \boldsymbol{\Lambda}_{\nu} \times \boldsymbol{\Lambda}_{t}\left(\boldsymbol{\lambda}_{\nu}\right), \quad,
$$

- n - the number of degrees of freedom for displacements
- p - the number of the contact nodes
- $\boldsymbol{F}=\operatorname{diag}\left(\mathcal{F}_{1}, \ldots, \mathcal{F}_{p}\right)$
- $\boldsymbol{\Lambda}_{\nu}=\mathbb{R}_{+}^{p}$
- $\boldsymbol{\Lambda}_{t}(\boldsymbol{g})=\left\{\boldsymbol{\mu} \in \mathbb{R}^{p}| | \mu_{i} \mid \leq g_{i} \forall i=1, \ldots, p\right\}, \quad \boldsymbol{g} \in \boldsymbol{\Lambda}_{\nu}$

Solution maps

- $\mathscr{S}: \mathbb{R}^{n} \times \mathbb{R}_{++}^{p} \rightrightarrows \mathbb{R}^{n} \times \mathbb{R}^{p} \times \mathbb{R}^{p}$
$\mathscr{S}(\overline{\boldsymbol{f}}, \overline{\mathcal{F}})=\left\{\left(\boldsymbol{u}, \boldsymbol{\lambda}_{\nu}, \boldsymbol{\lambda}_{t}\right)\right\} \ldots$ the solution set to (\mathcal{A})
with $\boldsymbol{f}:=\overline{\boldsymbol{f}}$ and $\mathcal{F}:=\overline{\mathcal{F}}$
- $\mathcal{S}_{\bar{f}}: \mathbb{R}_{++}^{p} \rightrightarrows \mathbb{R}^{n} \times \mathbb{R}^{p} \times \mathbb{R}^{p}$
$\mathcal{S}_{\overline{\boldsymbol{f}}}(\mathcal{F})=\mathscr{S}(\overline{\boldsymbol{f}}, \mathcal{F}), \quad \mathcal{F} \in \mathbb{R}_{++}^{p}, \overline{\boldsymbol{f}} \in \mathbb{R}^{n}$ given
- $\boldsymbol{S}_{\overline{\mathcal{F}}}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n} \times \mathbb{R}^{p} \times \mathbb{R}^{p}$

$$
\boldsymbol{S}_{\overline{\mathcal{F}}}(\boldsymbol{f})=\mathscr{S}(\boldsymbol{f}, \overline{\mathcal{F}}), \quad \boldsymbol{f} \in \mathbb{R}^{n}, \overline{\mathcal{F}} \in \mathbb{R}_{++}^{p} \text { given }
$$

Theorem

Let us suppose that $\left(\boldsymbol{f}^{0}, \mathcal{F}^{0}, \boldsymbol{y}^{0}\right) \in \mathbb{R}^{n} \times \mathbb{R}_{++}^{p} \times \mathbb{R}^{n+2 p}$ is such that $\boldsymbol{y}^{0}:=\left(\boldsymbol{u}^{0}, \boldsymbol{\lambda}_{\nu}^{0}, \lambda_{t}^{0}\right) \in \mathcal{S}_{\boldsymbol{f}^{0}}\left(\mathcal{F}^{0}\right)$ and there exist: a single-valued Lipschitz continuous function $\phi_{\mathcal{F}^{0}}$ from a neighborhood \boldsymbol{O} of \boldsymbol{f}^{0} into $\mathbb{R}^{n+2 p}$ and a neighborhood $\hat{\boldsymbol{Y}}$ of \boldsymbol{y}^{0} such that

$$
\phi_{\mathcal{F}^{0}}\left(\boldsymbol{f}^{0}\right)=\boldsymbol{y}^{0} \quad \& \quad \phi_{\mathcal{F}^{0}}(\boldsymbol{f})=\boldsymbol{S}_{\mathcal{F}^{0}}(\boldsymbol{f}) \cap \hat{\boldsymbol{Y}} \quad \forall \boldsymbol{f} \in \boldsymbol{O}
$$

Then there are neighborhoods $\boldsymbol{U}, \boldsymbol{Y}$ of \mathcal{F}^{0} and \boldsymbol{y}^{0}, respectively, and a single-valued Lipschitz continuous function $\sigma_{\boldsymbol{f}^{0}}: \boldsymbol{U} \rightarrow \boldsymbol{Y}$ satisfying

$$
\sigma_{\boldsymbol{f}^{0}}\left(\mathcal{F}^{0}\right)=\boldsymbol{y}^{0} \quad \& \quad \sigma_{\boldsymbol{f}^{0}}(\mathcal{F})=\mathcal{S}_{\boldsymbol{f}^{0}}(\mathcal{F}) \cap \boldsymbol{Y} \quad \forall \mathcal{F} \in \boldsymbol{U}
$$

- Locally the dependence of a solution on \mathcal{F} can be deduced from the dependence of the solution on the load vector \boldsymbol{f} keeping \mathcal{F} fixed. This is much simpler since the dependence on the load vector is piecewise affine.

Numerical continuation of solution curves

Taking a smooth path

$$
\alpha \in I \mapsto \mathcal{F}(\alpha)=\left(\mathcal{F}_{1}(\alpha), \ldots, \mathcal{F}_{p}(\alpha)\right) \in \mathbb{R}_{+}^{p}, \quad I \subset \mathbb{R}^{1} \text { open }
$$

we shall approximate the solution curve of the system:

$$
\text { Find } \boldsymbol{x} \in \mathbb{R}^{n+2 p} \times I \text { such that } \mathcal{H}(\boldsymbol{x})=\mathbf{0}
$$

where

$$
\begin{aligned}
\mathcal{H}(\boldsymbol{x})=\left(\begin{array}{c}
\boldsymbol{A} \boldsymbol{u}+\boldsymbol{B}_{\nu}^{T} \boldsymbol{\lambda}_{\nu}+\boldsymbol{B}_{t}^{T} \boldsymbol{\lambda}_{t}-\boldsymbol{f} \\
\boldsymbol{\lambda}_{\nu}-\boldsymbol{P}_{\boldsymbol{\Lambda}_{\nu}}\left(\boldsymbol{\lambda}_{\nu}+r \boldsymbol{B}_{\nu} \boldsymbol{u}\right) \\
\boldsymbol{\lambda}_{t}-\boldsymbol{P}_{\boldsymbol{\Lambda}_{t}\left(\mathcal{F}(\alpha) \boldsymbol{\lambda}_{\nu}\right)}\left(\boldsymbol{\lambda}_{t}+r \boldsymbol{B}_{t} \boldsymbol{u}\right)
\end{array}\right) \\
\boldsymbol{x}:=\left(\boldsymbol{u}, \boldsymbol{\lambda}_{\nu}, \boldsymbol{\lambda}_{t}, \alpha\right) \in \mathbb{R}^{n+2 p} \times I,
\end{aligned}
$$

$$
\boldsymbol{\Lambda}_{t}(\mathcal{F} \boldsymbol{g})=\left\{\boldsymbol{\mu} \in \mathbb{R}^{p}| | \mu_{i} \mid \leq \mathcal{F}_{i} g_{i} \forall i=1, \ldots, p\right\}, \quad \boldsymbol{g} \in \boldsymbol{\Lambda}_{\nu}
$$

\mathcal{H} is a piecewise smooth function:
for every $\overline{\boldsymbol{x}} \in \mathbb{R}^{n+2 p} \times I$ there exists an open neighborhood
$\boldsymbol{O} \subset \mathbb{R}^{n+2 p} \times I, \overline{\boldsymbol{x}} \in \boldsymbol{O}$, and a finite number of smooth functions $\mathcal{H}^{(i)}: \boldsymbol{O} \rightarrow \mathbb{R}^{n+2 p}, i=1, \ldots l$, such that $\mathcal{H}(\boldsymbol{x}) \in\left\{\mathcal{H}^{(1)}(\boldsymbol{x}), \ldots, \mathcal{H}^{(I)}(\boldsymbol{x})\right\}$ for every $\boldsymbol{x} \in \boldsymbol{O}$.

- $\mathcal{H}^{(1)}, \ldots, \mathcal{H}^{(I)}$ - the selection functions for \mathcal{H} at $\overline{\boldsymbol{x}}$
- $\mathcal{I}_{\mathcal{H}}(\overline{\boldsymbol{x}}) \equiv\left\{i \in\{1, \ldots, l\} \mid \mathcal{H}(\overline{\boldsymbol{x}})=\mathcal{H}^{(i)}(\overline{\boldsymbol{x}})\right\}$ - the active index set at $\overline{\boldsymbol{x}}$
- $\mathcal{H}^{(i)}, i \in I_{\mathcal{H}}(\overline{\boldsymbol{x}})$ — the active selection functions for \mathcal{H} at $\overline{\boldsymbol{x}}$

Piecewise-smooth variant of the Moore-Penrose continuation

- computes a sequence $\left\{\boldsymbol{x}^{j}\right\}$ with $\left\|\mathcal{H}\left(\boldsymbol{x}^{j}\right)\right\| \leq \varepsilon$ and a sequence of the corresponding unit tangential vectors $\left\{\boldsymbol{\tau}^{j}\right\}$:

$$
\mathcal{H}^{\prime}\left(\boldsymbol{x}^{j} ; \boldsymbol{\tau}^{j}\right)=\mathbf{0}, \quad\left\|\boldsymbol{\tau}^{j}\right\|=1
$$

- consists of two steps:
prediction - an initial approximation of the new point \boldsymbol{x}^{j+1} is given by

$$
\boldsymbol{X}^{0}:=\boldsymbol{x}^{j}+h \tau^{j}, \quad h>0
$$

corrections $-\boldsymbol{x}^{j+1}, \boldsymbol{\tau}^{j+1}$ are obtained by a piecewise smooth Newton-like procedure.

Difficulty with the points of non-differentiability

- to handle the points of non-differentiability of \mathcal{H}, the so-called test functions $\boldsymbol{\theta}^{k}, k=1,2,3$, are employed:

$$
\begin{aligned}
& \theta_{i}^{1}(\boldsymbol{x})=\left(\boldsymbol{\lambda}_{\nu}+r \boldsymbol{B}_{\nu} \boldsymbol{u}\right)_{i}, \\
& \theta_{i}^{2}(\boldsymbol{x})=\left(\boldsymbol{\lambda}_{t}+r \boldsymbol{B}_{t} \boldsymbol{u}\right)_{i}-\mathcal{F}_{i}(\alpha) \lambda_{\nu, i}, \\
& \theta_{i}^{3}(\boldsymbol{x})=\left(\boldsymbol{\lambda}_{t}+r \boldsymbol{B}_{t} \boldsymbol{u}\right)_{i}+\mathcal{F}_{i}(\alpha) \lambda_{\nu, i}, \\
& \quad i=1, \ldots, p, \boldsymbol{x} \in \mathbb{R}^{n+2 p} \times I .
\end{aligned}
$$

Their signs and vanishing components characterize uniquely the selection functions for \mathcal{H} which are active at \boldsymbol{x} :

$$
\begin{aligned}
& \theta_{i}^{1}(\boldsymbol{x}) \geq 0 \ldots \text { contact, } \quad \theta_{i}^{1}(\boldsymbol{x})<0 \ldots \text { no contact } \\
& \theta_{i}^{2}(\boldsymbol{x})>0 \vee \theta_{i}^{3}(\boldsymbol{x})<0\left(\theta_{i}^{1}(\boldsymbol{x}) \geq 0\right) \ldots \text { contact-slip } \\
& \theta_{i}^{2}(\boldsymbol{x})<0<\theta_{i}^{3}(\boldsymbol{x})\left(\theta_{i}^{1}(\boldsymbol{x}) \geq 0\right) \ldots \text { contact-stick }
\end{aligned}
$$

$$
\text { at the } i^{\text {th }} \text { contact node. }
$$

Algorithm

Data: $\varepsilon, \varepsilon^{\prime}>0, h \geq h_{\text {min }}>0, k_{\max }>0$ and $\boldsymbol{x}^{0} \in \mathbb{R}^{n+2 p} \times I, \tau^{0} \in \mathbb{R}^{n+2 p+1}$ satisfying:

$$
\left\|\mathcal{H}\left(\boldsymbol{x}^{0}\right)\right\|<\varepsilon, \quad \mathcal{H}^{\prime}\left(\boldsymbol{x}^{0} ; \boldsymbol{\tau}^{0}\right)=\mathbf{0}, \quad\left\|\boldsymbol{\tau}^{0}\right\|=1
$$

Step 1: Set $j:=0$.
Step 2 (prediction): Set $\boldsymbol{X}^{0}:=\boldsymbol{x}^{j}+h \tau^{j}, \boldsymbol{T}^{0}:=\boldsymbol{\tau}^{j}$.
Step 3 (corrections): Compute the iterates \boldsymbol{X}^{k} and \boldsymbol{T}^{k} until

$$
\left(\left\|\mathcal{H}\left(\boldsymbol{X}^{k}\right)\right\|<\varepsilon \&\left\|\boldsymbol{X}^{k}-\boldsymbol{X}^{k-1}\right\|<\varepsilon^{\prime}\right) \vee k=k_{\max } .
$$

Step 4: If the corrections have converged, set

$$
\boldsymbol{x}^{j+1}:=\boldsymbol{X}^{k}, \boldsymbol{\tau}^{j+1}:=\boldsymbol{T}^{k}
$$

and go to Step 7.
Step 5: If $h>h_{\text {min }}$, decrease h and go to Step 2.

Step 6: Vanishing components of $\boldsymbol{\theta}^{1}\left(\boldsymbol{x}^{j}\right), \boldsymbol{\theta}^{2}\left(\boldsymbol{x}^{j}\right), \boldsymbol{\theta}^{3}\left(\boldsymbol{x}^{j}\right)$ determine a new selection function $\mathcal{H}^{(i)}$ for \mathcal{H} which is likely to be active in a vicinity of \boldsymbol{x}^{j}. Compute τ^{j} satisfying

$$
\boldsymbol{\nabla} \mathcal{H}^{(i)}\left(\boldsymbol{x}^{j}\right) \boldsymbol{\tau}^{j}=\mathbf{0}, \quad\left\|\boldsymbol{\tau}^{j}\right\|=1
$$

preserving the so-called orientation. Initialize h and go to Step 2.
Step 7: Define h for the next iteration according to the rate of convergence of the corrections, set $j:=j+1$ and go to Step 2.

Numerical examples

$\lambda>0, \mu>0 \ldots$ the Lamé coefficients
Geometry of the models

- One contact node: $p=1, n=2$
- Two contact nodes: $p=2, n=4$

The Algorithm: Parameter settings

$\varepsilon=\varepsilon^{\prime}=10^{-6}, h_{\min }=10^{-5}, h=0.05, k_{\max }=10$.

Model: $p=1, n=2$

Analysis: [Hild, Renard, 2005]
(1) if $\left\{(\lambda+3 \mu) f_{\nu}+(\lambda+\mu) f_{t} \leq 0 \wedge f_{\nu} \leq 0\right\} \vee\left\{(\lambda+3 \mu) f_{\nu}+(\lambda+\mu) f_{t}>0\right\}$ then \exists one solution branch
(2) if $\left\{(\lambda+3 \mu) f_{\nu}+(\lambda+\mu) f_{t}<0 \wedge f_{\nu}>0\right\}$ then \exists two solution branches
(3) if $\left\{(\lambda+3 \mu) f_{\nu}+(\lambda+\mu) f_{t}=0 \wedge f_{\nu}>0\right\}$ then \exists one bifurcating branch
... the explicit formulae available

Transition sets

Example 1

One solution branch: $\quad f_{\nu}=1.5, f_{t}=7, \lambda=\mu=1$.

Exact solution

Computed solution

green = contact-stick, blue=contact-slip
$0=$ the transition point

* initial points of the path-following,
the arrows always mark the positive directions

Computed solution: zoom

test functions:
12: $\theta^{1}=1.5000, \theta^{2}=-3.7695, \theta^{3}=17.7695$
15: $\theta^{1}=1.5000, \theta^{2}=-0.1754, \theta^{3}=14.1754$
25: $\theta^{1}=1.5000, \theta^{2}=0.0000, \theta^{3}=14.0000$
$1: \theta^{1}=1.5128, \theta^{2}=0.0128, \theta^{3}=13.9613$
$2: \theta^{1}=1.5299, \theta^{2}=0.0299, \theta^{3}=13.9102$
green = contact-stick, blue = contact-slip

Example 2

Two solution branches: $\quad f_{\nu}=1.5, f_{t}=-4, \lambda=\mu=1$.

Exact solution

Computed solution

red $=$ no contact, green $=$ contact-stick, blue $=$ contact-slip
o = the transition point

* initial points of the path-following,
the arrows always mark the positive directions

Example 3

One bifurcating branch: $\quad f_{\nu}=1, f_{t}=-2, \lambda=\mu=1$.

Exact solution

branch 1: gray = grazing contact branch 2: green = contact-stick, blue = contact-slip

- For $\alpha=(\lambda+3 \mu) /(\lambda+\mu)=2$ the branch 1 bifurcates.
- The bifurcating branch 2 contains the continuum of solutions represented by the vertical segment.

Computed solutions:

branch 1

15: $\theta^{1}=0.0000, \theta^{2}=-1.0000, \theta^{3}=-1.0000$
19: $\theta^{1}=0.0000, \theta^{2}=-1.0000, \theta^{3}=-1.0000$
gray = grazing contact

Computed solutions:
branch 2

$9: \theta^{1}=0.3669, \theta^{2}=-2.1007, \theta^{3}=-0.6331$
14: $\theta^{1}=0.0001, \theta^{2}=-1.0004, \theta^{3}=-0.9999$
18: $\theta^{1}=0.0000, \theta^{2}=-1.0000, \theta^{3}=-0.9999$
$3: \theta^{1}=0.0000, \theta^{2}=-1.0000, \theta^{3}=-1.0000$
$5: \theta^{1}=0.0000, \theta^{2}=-1.0000, \theta^{3}=-1.0000$
green = contact-stick, blue = contact-slip,
gray = grazing contact

Example 4

A small data perturbation destroys the bifurcation:
$f_{\nu}=1-0.08, f_{t}=-2, \lambda=\mu=1$

Exact solution

Computed solution

two solution branches
red $=$ no contact, green $=$ contact-stick, blue $=$ contact-slip

Model: $p=2, n=4$

Data:

- $\boldsymbol{f}=\left(\boldsymbol{f}_{1}, \boldsymbol{f}_{2}\right), \boldsymbol{f}_{1}=\left(f_{\nu, 1}, f_{t, 1}\right), \boldsymbol{f}_{2}=\left(f_{\nu, 2}, f_{t, 2}\right)$
- $\mathcal{F}(\alpha)=(\alpha, \alpha) \in \mathbb{R}^{2}, \alpha \in \mathbb{R}$
-

$$
\boldsymbol{A}=\left(\begin{array}{cccc}
\frac{\mu}{2} & 0 & -\frac{\mu}{2} & -\frac{\mu}{2} \\
0 & \frac{\lambda+2 \mu}{2} & -\frac{\lambda}{2} & -\frac{\lambda+2 \mu}{2} \\
-\frac{\mu}{2} & -\frac{\lambda}{2} & \lambda+3 \mu & 0 \\
-\frac{\mu}{2} & -\frac{\lambda+2 \mu}{2} & 0 & \lambda+3 \mu
\end{array}\right)
$$

... the stiffness matrix

Observation:

\exists at most two solution branches

Example 1

Two solution branches: $\quad f_{\nu, 1}=0.4000, f_{t, 1}=-2.1417$, $f_{\nu, 2}=1.3717, f_{t, 2}=-2.1417, \quad \lambda=\mu=1$.

and

$$
\lambda_{\nu, 1}=\lambda_{\nu, 2}=0, \quad \alpha \in \mathbb{R}
$$

the "trivial" branch 1 of the no contact points
red $=$ no contact, green $=$ contact-stick, blue $=$ contact-slip

Computed solution: branch 2

o = the transition points
red $=$ no contact, green $=$ contact-stick, blue $=$ contact-slip

Classification of the transition points
$T_{1}: 19$

$$
\begin{array}{ll}
17: & \theta_{1}^{1}=0.4000, \theta_{1}^{2}=-4.2838, \theta_{1}^{3}=0.0005 \\
17: & \theta_{2}^{1}=1.3717, \theta_{2}^{2}=-9.4874, \theta_{2}^{3}=5.2041 \\
19: & \theta_{1}^{1}=0.4000, \theta_{1}^{2}=-4.2834, \theta_{1}^{3}=0.0000 \\
19: & \theta_{2}^{1}=1.3717, \theta_{2}^{2}=-9.4859, \theta_{2}^{3}=5.2025 \\
21: & \theta_{1}^{1}=0.4000, \theta_{1}^{2}=-4.2542, \theta_{1}^{3}=-0.0146 \\
21: & \theta_{2}^{1}=1.3644, \theta_{2}^{2}=-9.3940, \theta_{2}^{3}=5.0668
\end{array}
$$

Hence,
green $=$ contact-stick \longrightarrow blue $=$ contact-slip
green $=$ contact-stick \longrightarrow green $=$ contact - stick

Classification of the transition points
T_{2} : 38

$$
\begin{array}{ll}
36: & \theta_{1}^{1}=0.4000, \theta_{1}^{2}=-3.0020, \theta_{1}^{3}=-0.6407 \\
36: & \theta_{2}^{1}=1.0513, \theta_{2}^{2}=-6.2058, \theta_{2}^{3}=0.0003 \\
38: & \theta_{1}^{1}=0.4000, \theta_{1}^{2}=-3.0019, \theta_{1}^{3}=-0.6407 \\
38: & \theta_{2}^{1}=1.0513, \theta_{2}^{2}=-6.2056, \theta_{2}^{3}=0.0000 \\
40: & \theta_{1}^{1}=0.3918, \theta_{1}^{2}=-2.9950, \theta_{1}^{3}=-0.6689 \\
40: & \theta_{2}^{1}=1.0372, \theta_{2}^{2}=-6.1748, \theta_{2}^{3}=-0.0165
\end{array}
$$

Hence,
blue $=$ contact - slip \longrightarrow blue = contact-slip
green $=$ contact-stick \longrightarrow blue $=$ contact-slip

Classification of the transition points
T_{3} : 94

$$
\begin{array}{ll}
89: & \theta_{1}^{1}=0.0002, \theta_{1}^{2}=-2.2294, \theta_{1}^{3}=-2.2265 \\
\text { 89: } & \theta_{2}^{1}=0.2584, \theta_{2}^{2}=-5.3652, \theta_{2}^{3}=-0.7997 \\
94: & \theta_{1}^{1}=0.0000, \theta_{1}^{2}=-2.2278, \theta_{1}^{3}=-2.2278 \\
94: & \theta_{2}^{1}=0.2578, \theta_{2}^{2}=-5.3667, \theta_{2}^{3}=-0.8000 \\
96: & \theta_{1}^{1}=-0.0024, \theta_{1}^{2}=-2.2302, \theta_{1}^{3}=-2.2302 \\
96: & \theta_{2}^{1}=0.2554, \theta_{2}^{2}=-5.3595, \theta_{2}^{3}=-0.8024
\end{array}
$$

Hence,
blue = contact - slip \longrightarrow red $=$ no contact
blue $=$ contact - slip \longrightarrow blue $=$ contact-slip

Consider a smooth loading path $\alpha \in I \mapsto \boldsymbol{f}(\alpha)$ for \mathcal{F} fixed

Example 2

$\mathcal{F}=(4,4) \in \mathbb{R}^{2}, \quad f_{\nu, 1}=-0.1 \alpha+0.4, f_{\nu, 2}=0.2 \alpha+1.8$, $f_{t, 1}=1.1 \alpha+0.2, f_{t, 2}=0.8 \alpha-0.1, \quad \lambda=\mu=1$.

red $=$ no contact, green $=$ contact - stick, blue $=$ contact-slip
o = the transition point

Computed solution

red $=$ no contact, green $=$ contact-stick, blue $=$ contact-slip
o = the transition point

Zoom: transition points 1 and 2

red $=$ no contact, blue = contact-slip
o = the transition point

Thank you for your attention.

References

國 P. G. Ciarlet.
The Finite Element Method for Elliptic Problems.
Studies in Mathematics and its Applications, Vol. 4.
North-Holland, Amsterdam-New York-Oxford, 1978.
围 J. Haslinger, R. Kučera, O. Vlach.
Bifurcations in contact problems with local Coulomb friction.
In: K. Kunisch, et al. (Eds.), Numerical Mathematics and Advanced Applications. Proceedings of ENUMATH 2007,
Berlin: Springer (2008), pp. 811-818.
R. Hild, Y. Renard.

Local uniqueness and continuation of solutions for the discrete Coulomb friction problem in elastostatics.
Quart. Appl. Math. 63 (2005) 553-573.

