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Outline

(i) uniqueness results — dependence on the mesh norm and
the coefficient of friction;

(ii) existence of local Lipschitz continuous branches of
solutions;

(iii) piecewise-smooth Moore-Penrose continuation method;
(iv) elementary examples.



3D-contact problems with orthotropic Coulomb friction
and solution-dependent coefficients of friction

Ω ⊂ R3, ∂Ω = Γu ∪ ΓP ∪ Γc

Classical formulation

(equilibrium equations)

∂σij

∂xj
(u) + Fi = 0 in Ω, i = 1,2,3,

σij(u) = cijklεkl(u);

u = 0 on Γu;

σij(u)νj = Pi on ΓP , i = 1,2,3;



(unilateral conditions)

uν := u · ν ≤ 0, Tν(u) := σij(u)νiνj ≤ 0,
Tν(u)uν = 0 on Γc ;

(orthotropic Coulomb friction law)

x ∈ Γc 7→ t1(x), t2(x) . . . principal orthotropic axes
Fi := Fi(x , ‖ut (x)‖), i = 1,2 . . . coefficients of friction
in the direction t i , F = diag(F1,F2)

ut (x) = 0 =⇒ ‖F−1(x ,0)T t (u)(x)‖ ≤ −Tν(u)(x), x ∈ Γc ,

ut (x) 6= 0 =⇒ F−1(x , ‖ut (x)‖)T t (u)(x)

= Tν(u)(x)
F(x , ‖ut (x)‖)ut (x)

‖F(x , ‖ut (x)‖)ut (x)‖ , x ∈ Γc .



Weak formulation

V = {v ∈ (H1(Ω))3 |v = 0 on Γu}
K = {v ∈ V | vν ≤ 0 on Γc}
Xν = {ϕ ∈ L2(Γc) | ∃v ∈ V : ϕ = vν on Γc}, X ′ν = dual of Xν
Xt+ = {ϕ ∈ L2(Γc) | ∃v ∈ V : ϕ = ‖v t‖ on Γc}
Λν = {µν ∈ X ′ν | 〈µν , vν〉ν ≤ 0 ∀v ∈ K}

a : V × V → R1, ` : V → R1, j : Xt+ × Λν × V → R1

a(u,v) :=

∫
Ω

cijklεij(u)εkl(v) dx , u,v ∈ V

`(v) :=

∫
Ω

F · v dx +

∫
ΓP

P · v ds, F ∈ (L2(Ω))3, P ∈ (L2(ΓP))3

j(ϕ,g,v t ) := 〈g, ‖F(ϕ)v t‖〉ν , g ∈ Λν , ϕ ∈ Xt+, v ∈ V



Definition A function u ∈ K is said to be a weak solution to our
problem iff

a(u,v − u) + j(‖ut‖,−Tν(u),v t )− j(‖ut‖,−Tν(u),ut )

≥ `(v − u) ∀v ∈ K (P)

Fixed-point formulation

Let (ϕ,g) ∈ Xt+ × Λν be given and define the auxiliary problem:

Find u := u(ϕ,g) ∈ K such that
a(u,v − u) + j(ϕ,g,v t )− j(ϕ,g,ut )

≥ `(v − u) ∀v ∈ K .

 (P(ϕ,g))

Let Ψ : Xt+ × Λν → Xt+ × Λν be defined by

Ψ(ϕ,g) = (‖ut‖,−Tν(u)), (ϕ,g) ∈ Xt+ × Λν .

Then u ∈ K solves (P) iff (‖ut‖,−Tν(u)) is a fixed point of Ψ.



Mixed formulation of P(ϕ,g)

Find (u, λν) ∈ V × Λν such that
a(u,v − u) + j(ϕ,g,v t )− j(ϕ,g,ut )

≥ `(v − u)− 〈λν , vν − uν〉ν ∀v ∈ V ,
〈µν − λν ,uν〉ν ≤ 0 ∀µν ∈ Λν .

 (M(ϕ,g))

Since λν = −Tν(u) on Γc , one has

Ψ(ϕ,g) = (‖ut‖, λν).



Discrete contact problems with Coulomb friction

Based on an appropriate discretization of the mapping Ψ.

T Ω
h . . . partition of Ω into finite elements T , h = norm of T Ω

h

T Γc
H . . . partition of Γc into finite elements R, H = norm of T Γc

H

V h = {vh ∈ C(Ω) | vh
|T ∈ Pk (T ) ∀T ∈ T Ω

h , vh = 0 on Γu}
LH = {µH ∈ L2(Γc) |µH

|R ∈ Ps(R) ∀R ∈ T Γc
H }

V h = (V h)3

W h = V h
|Γc
, W h

+ = {ϕh ∈W h |ϕh ≥ 0 on Γc}
ΛH
ν = {µH ∈ LH |µH ≥ 0 on Γc}



The couple (V h,LH) has to satisfy the following condition:

µH ∈ LH & (µH , vh
ν )0,Γc = 0 ∀vh ∈ V h =⇒ µH = 0. (1)

Mixed finite element discretization ofM(ϕ,g)

For ϕh ∈W h
+, gH ∈ ΛH

ν given define the problem:

Find (uh, λH
ν ) ∈ V h × ΛH

ν such that

a(uh,vh − uh) + j(ϕh,gH ,vh
t )

− j(ϕh,gH ,uh
t ) ≥ `(vh − uh)

− (λH
ν , v

h
ν − uh

ν )0,Γc ∀vh ∈ V h,

(µH
ν − λH

ν ,u
H
ν )0,Γc ≤ 0 ∀µH

ν ∈ ΛH
ν .


(MhH(ϕh,gH))

Proposition (1) =⇒ (MhH(ϕh,gH)) has a unique solution for
any (ϕh,gH) ∈W h

+ × ΛH
ν .



Assumptions
the vector field x 7→ (t1(x), t2(x)), x ∈ Γc , is sufficiently
smooth so that

vh
t = (vh

t1 , v
h
t2) ∈ (H1(Γc))2 ∀vh ∈ V h,

∃ ct > 0 independent of vh ∈ V h and h > 0 :

‖vh
t ‖1,Γc ≤ ct‖vh‖1,Γc ∀vh ∈ V h

 (2)

∃ rh ∈ L(H1(Γc),W h) such that

‖ϕ− rhϕ‖0,Γc ≤ cr hΓc‖ϕ‖1,Γc ∀ϕ ∈ H1(Γc),

ϕ ∈ H1(Γc), ϕ ≥ 0 on Γc =⇒ rhϕ ∈W h
+,

}
(3)

where hΓc = norm of T Ω
h |Γc

and cr > 0 does not depend on
ϕ and hΓc .



the satisfaction of the following inverse inequalities for
elements of V h

|Γc
(see [Ciarlet, 1978]):

‖vh‖1,Γc ≤ c(1,0)
inv h−1

Γc
‖vh‖0,Γc ∀vh ∈ V h,

‖vh‖∞,Γc ≤ c(∞)
inv h−1

Γc
‖vh‖0,Γc ∀vh ∈ V h,

 (4)

where c(1,0)
inv , c(∞)

inv > 0 do not depend on hΓc and vh ∈ V h

F1,F2 ∈ C(Γc × R1
+),

0 < Fmin ≤ Fi(x , ξ) ≤ Fmax,

i = 1,2, ∀ (x , ξ) ∈ Γc × R1
+

 (5)



Let ΨhH : W h
+ × ΛH

ν →W h
+ × ΛH

ν be defined by

ΨhH(ϕh,gH) = (rh‖uh
t ‖, λH

ν ), (ϕh,gH) ∈W h
+ × ΛH

ν .

Definition A function uh ∈ V h is said to be a solution to the
discrete problem iff the couple (rh‖uh

t ‖, λH
ν ) is a fixed point of

ΨhH .

Existence of solutions to discrete problems

Let

‖(ϕh, µH)‖W h×LH := ‖ϕh‖0,Γc +‖µH‖−1/2,h, (ϕh, µH) ∈W h×LH ,

where

‖µH‖−1/2,h = sup
06=vh∈V h

(µH , vh
ν )0,Γc

‖vh‖1,Ω
.

Proposition Let (2)–(5) be satisfied. Then ΨhH has at least one
fixed point in W h

+ × ΛH
ν .



Uniqueness of the solutions

Denote

L = max
i=1,2

{
sup

x∈Γc , ξ>0

∣∣∣∂Fi(x , ξ)

∂ξ

∣∣∣},
κ(F) = sup

x∈Γc , ξ>0

max{F1(x , ξ),F2(x , ξ)}
min{F1(x , ξ),F2(x , ξ)} , F = diag(F1,F2).

Then ΨhH is Lipschitz continuous in W h
+ × ΛH

ν ∩ B, where B is a
ball in W h × LH with a sufficiently large radius:

∃C > 0 : ‖ΨhH(ϕh,gH)−ΨhH(ϕ̄h, ḡH)‖W h×LH

≤ C‖(ϕh,gH)− (ϕ̄h, ḡH)‖W h×LH

∀ (ϕh,gH), (ϕ̄h, ḡH) ∈W h
+ × ΛH

ν ∩ B,

C = max{C1(Fmax,H),C2(L, κ(F),H,hΓc )}.



It holds:
(a) C1(Fmax,H)→ 0 if Fmax → 0+ for any H > 0 fixed,

C2(L, κ(F),H,hΓc )→ 0 if L→ 0+ for any H, hΓc fixed and
κ(F) bounded;

(b) if F does not depend on ‖uh
t ‖ (i.e. L ≡ 0) then C2 ≡ 0;

(c) if F is fixed then

C1(Fmax,H) ∼ H−1/2,

C2(L, κ(F),H,hΓc ) ∼ (HhΓc )−1/2

provided that the Babuška-Brezzi condition for {V h,LH} is
satisfied:

sup
06=vh∈V h

(µH , vh
ν )0,Γc

‖vh‖1,Ω
≥ β‖µH‖∗,Γc ∀µH ∈ LH ,

where β > 0 does not depend on h, H and

‖µH‖∗,Γc = sup
06=v∈V

(µH , vν)0,Γc

‖v‖1,Ω
.



Consequence

ΨhH is contractive provided that Fmax and L are small enough.
However, the bounds Fcrit and Lcrit are mesh-dependent.



Non-uniqueness of the solution
[Haslinger, Kučera, Vlach, 2008]

Ω = (0,10)× (0,1)× (0,1) [m]
E = 21.19e10 [Pa], σ = 0.277
F = diag(F ,F), F := F(‖ut (x)‖)
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Existence of local Lipschitz continuous branches of
solutions

Algebraic formulation (2D contact problems with isotropic
Coulomb friction with the coefficient F := F(x))

Find (u,λν ,λt ) ∈ Rn × Λν × Λt (λν) such that

Au = f − BT
ν λν − BT

t Fλt ,

(µν − λν) · Bνu + F (µt − λt ) · Btu ≤ 0
∀ (µν ,µt ) ∈ Λν × Λt (λν),

 (A)

n — the number of degrees of freedom for displacements
p — the number of the contact nodes
F = diag(F1, . . . ,Fp)

Λν = Rp
+

Λt (g) = {µ ∈ Rp | |µi | ≤ gi ∀ i = 1, . . . ,p}, g ∈ Λν



Solution maps

S : Rn × Rp
++ ⇒ Rn × Rp × Rp

S (f̄ , F̄) = {(u,λν ,λt )} . . . the solution set to (A)

with f := f̄ and F := F̄

S f̄ : Rp
++ ⇒ Rn × Rp × Rp

S f̄ (F) = S (f̄ ,F), F ∈ Rp
++, f̄ ∈ Rn given

SF̄ : Rn ⇒ Rn × Rp × Rp

SF̄ (f ) = S (f , F̄), f ∈ Rn, F̄ ∈ Rp
++ given



Theorem
Let us suppose that (f 0,F0,y0) ∈ Rn × Rp

++ × Rn+2p is such
that y0 := (u0,λ0

ν ,λ
0
t ) ∈ Sf 0(F0) and there exist: a

single-valued Lipschitz continuous function φF0 from a
neighborhood O of f 0 into Rn+2p and a neighborhood Ŷ of y0

such that

φF0(f 0) = y0 & φF0(f ) = SF0(f ) ∩ Ŷ ∀ f ∈ O.

Then there are neighborhoods U, Y of F0 and y0, respectively,
and a single-valued Lipschitz continuous function σf 0 : U → Y
satisfying

σf 0(F0) = y0 & σf 0(F) = Sf 0(F) ∩ Y ∀F ∈ U.

Locally the dependence of a solution on F can be
deduced from the dependence of the solution on the load
vector f keeping F fixed. This is much simpler since the
dependence on the load vector is piecewise affine.



Numerical continuation of solution curves

Taking a smooth path

α ∈ I 7→ F(α) = (F1(α), . . . ,Fp(α)) ∈ Rp
+, I ⊂ R1 open,

we shall approximate the solution curve of the system:

Find x ∈ Rn+2p × I such that H(x) = 0,

where

H(x) =

 Au + BT
ν λν + BT

t λt − f
λν − PΛν (λν + rBνu)

λt − PΛt (F(α)λν)(λt + rBtu)

 ,

x := (u,λν ,λt , α) ∈ Rn+2p × I,
Λt (Fg) = {µ ∈ Rp | |µi | ≤ Figi ∀ i = 1, . . . ,p}, g ∈ Λν .



H is a piecewise smooth function:
for every x̄ ∈ Rn+2p × I there exists an open neighborhood
O ⊂ Rn+2p × I, x̄ ∈ O, and a finite number of smooth functions
H(i) : O → Rn+2p, i = 1, . . . l , such that
H(x) ∈ {H(1)(x), . . . ,H(l)(x)} for every x ∈ O.

H(1), . . . ,H(l) — the selection functions for H at x̄
IH(x̄) ≡ {i ∈ {1, . . . , l} |H(x̄) = H(i)(x̄)}— the active
index set at x̄
H(i), i ∈ IH(x̄) — the active selection functions for H at x̄



Piecewise-smooth variant of the Moore-Penrose continuation
computes a sequence {x j} with ‖H(x j)‖ ≤ ε and a
sequence of the corresponding unit tangential vectors {τ j}:

H′(x j ; τ j) = 0, ‖τ j‖ = 1,

consists of two steps:
prediction — an initial approximation of the new point x j+1

is given by
X 0 := x j + hτ j , h > 0,

corrections — x j+1, τ j+1 are obtained by a piecewise
smooth Newton-like procedure.



Difficulty with the points of non-differentiability

rx j−1

r
x j

rx̄
H(x) = 0

�
�

���
hjτ

j



to handle the points of non-differentiability of H, the
so-called test functions θk , k = 1,2,3, are employed:

θ1
i (x) = (λν + rBνu)i ,

θ2
i (x) = (λt + rBtu)i −Fi(α)λν,i ,

θ3
i (x) = (λt + rBtu)i + Fi(α)λν,i ,

i = 1, . . . ,p, x ∈ Rn+2p × I.

Their signs and vanishing components characterize
uniquely the selection functions for H which are active at
x :

θ1
i (x) ≥ 0 . . . contact, θ1

i (x) < 0 . . . no contact

θ2
i (x) > 0 ∨ θ3

i (x) < 0 (θ1
i (x) ≥ 0) . . . contact-slip

θ2
i (x) < 0 < θ3

i (x) (θ1
i (x) ≥ 0) . . . contact-stick

at the i th contact node.



Algorithm
Data: ε, ε′ > 0,h ≥ hmin > 0, kmax > 0 and

x0 ∈ Rn+2p × I, τ 0 ∈ Rn+2p+1 satisfying:

‖H(x0)‖ < ε, H′(x0; τ 0) = 0, ‖τ 0‖ = 1.

Step 1: Set j := 0.
Step 2 (prediction): Set X 0 := x j + hτ j , T 0 := τ j .

Step 3 (corrections): Compute the iterates X k and T k until

(‖H(X k )‖ < ε & ‖X k − X k−1‖ < ε′) ∨ k = kmax.

Step 4: If the corrections have converged, set

x j+1 := X k , τ j+1 := T k

and go to Step 7.
Step 5: If h > hmin, decrease h and go to Step 2.



Step 6: Vanishing components of θ1(x j), θ2(x j), θ3(x j)
determine a new selection function H(i) for H which is
likely to be active in a vicinity of x j . Compute τ j satisfying

∇H(i)(x j)τ j = 0, ‖τ j‖ = 1

preserving the so-called orientation. Initialize h and go to
Step 2.

Step 7: Define h for the next iteration according to the rate of
convergence of the corrections, set j := j + 1 and go to
Step 2.



Numerical examples

λ > 0, µ > 0 ... the Lamé coefficients

Geometry of the models

One contact node: p = 1, n = 2

Two contact nodes: p = 2, n = 4

The Algorithm: Parameter settings
ε = ε′ = 10−6, hmin = 10−5, h = 0.05, kmax = 10.



Model: p = 1, n = 2

Analysis: [Hild, Renard, 2005]

1 if
{(λ+ 3µ)fν + (λ+µ)ft ≤ 0∧ fν ≤ 0}∨{(λ+ 3µ)fν + (λ+µ)ft > 0}
then ∃ one solution branch

2 if {(λ+ 3µ)fν + (λ+ µ)ft < 0 ∧ fν > 0}
then ∃ two solution branches

3 if {(λ+ 3µ)fν + (λ+ µ)ft = 0 ∧ fν > 0}
then ∃ one bifurcating branch

... the explicit formulae available



Transition sets



Example 1
One solution branch: fν = 1.5, ft = 7, λ = µ = 1.

Exact solution Computed solution

green = contact-stick, blue = contact-slip
◦ = the transition point

∗ initial points of the path-following,
the arrows always mark the positive directions



Computed solution: zoom

test functions:
12: θ1 = 1.5000, θ2 = −3.7695, θ3 = 17.7695
15: θ1 = 1.5000, θ2 = −0.1754, θ3 = 14.1754
25: θ1 = 1.5000, θ2 = 0.0000, θ3 = 14.0000
1 : θ1 = 1.5128, θ2 = 0.0128, θ3 = 13.9613
2 : θ1 = 1.5299, θ2 = 0.0299, θ3 = 13.9102

green = contact-stick, blue = contact-slip



Example 2
Two solution branches: fν = 1.5, ft = −4, λ = µ = 1.

Exact solution Computed solution

red = no contact, green = contact-stick, blue =
contact-slip
◦ = the transition point

∗ initial points of the path-following,
the arrows always mark the positive directions



Example 3
One bifurcating branch: fν = 1, ft = −2, λ = µ = 1.

Exact solution

branch 1: gray = grazing contact
branch 2: green = contact-stick, blue = contact-slip

For α = (λ+ 3µ)/(λ+ µ) = 2 the branch 1 bifurcates.

The bifurcating branch 2 contains the continuum of solutions
represented by the vertical segment.



Computed solutions:
branch 1

15: θ1 = 0.0000, θ2 = −1.0000, θ3 = −1.0000
19: θ1 = 0.0000, θ2 = −1.0000, θ3 = −1.0000

gray = grazing contact



Computed solutions:

branch 2 zoom x 10−3

9 : θ1 = 0.3669, θ2 = −2.1007, θ3 = −0.6331
14: θ1 = 0.0001, θ2 = −1.0004, θ3 = −0.9999
18: θ1 = 0.0000, θ2 = −1.0000, θ3 = −0.9999
3 : θ1 = 0.0000, θ2 = −1.0000, θ3 = −1.0000
5 : θ1 = 0.0000, θ2 = −1.0000, θ3 = −1.0000

green = contact-stick, blue = contact-slip,
gray = grazing contact



Example 4
A small data perturbation destroys the bifurcation:
fν = 1− 0.08, ft = −2, λ = µ = 1

Exact solution Computed solution

two solution branches

red = no contact, green = contact-stick, blue =
contact-slip



Model: p = 2, n = 4

Data:
f = (f 1, f 2), f 1 = (fν,1, ft,1), f 2 = (fν,2, ft,2)

F(α) = (α, α) ∈ R2, α ∈ R

A =


µ
2 0 −µ2 −µ2
0 λ+2µ

2 −λ2 −λ+2µ
2

−µ2 −λ2 λ+ 3µ 0
−µ2 −λ+2µ

2 0 λ+ 3µ


... the stiffness matrix

Observation:
∃ at most two solution branches



Example 1
Two solution branches: fν,1 = 0.4000, ft,1 = −2.1417,
fν,2 = 1.3717, ft,2 = −2.1417, λ = µ = 1.

and
λν,1 = λν,2 = 0 , α ∈ R

the "trivial" branch 1 of the no contact points

red = no contact, green = contact-stick, blue =
contact-slip



Computed solution: branch 2

◦ = the transition points
red = no contact, green = contact-stick, blue =
contact-slip



Classification of the transition points

T1: 19

17: θ1
1 = 0.4000, θ2

1 = −4.2838, θ3
1 = 0.0005

17: θ1
2 = 1.3717, θ2

2 = −9.4874, θ3
2 = 5.2041

19: θ1
1 = 0.4000, θ2

1 = −4.2834, θ3
1 = 0.0000

19: θ1
2 = 1.3717, θ2

2 = −9.4859, θ3
2 = 5.2025

21: θ1
1 = 0.4000, θ2

1 = −4.2542, θ3
1 = −0.0146

21: θ1
2 = 1.3644, θ2

2 = −9.3940, θ3
2 = 5.0668

Hence,

green = contact-stick −→ blue = contact-slip
green = contact-stick −→ green = contact-stick



Classification of the transition points

T2: 38

36: θ1
1 = 0.4000, θ2

1 = −3.0020, θ3
1 = −0.6407

36: θ1
2 = 1.0513, θ2

2 = −6.2058, θ3
2 = 0.0003

38: θ1
1 = 0.4000, θ2

1 = −3.0019, θ3
1 = −0.6407

38: θ1
2 = 1.0513, θ2

2 = −6.2056, θ3
2 = 0.0000

40: θ1
1 = 0.3918, θ2

1 = −2.9950, θ3
1 = −0.6689

40: θ1
2 = 1.0372, θ2

2 = −6.1748, θ3
2 = −0.0165

Hence,

blue = contact-slip −→ blue = contact-slip
green = contact-stick −→ blue = contact-slip



Classification of the transition points

T3: 94

89: θ1
1 = 0.0002, θ2

1 = −2.2294, θ3
1 = −2.2265

89: θ1
2 = 0.2584, θ2

2 = −5.3652, θ3
2 = −0.7997

94: θ1
1 = 0.0000, θ2

1 = −2.2278, θ3
1 = −2.2278

94: θ1
2 = 0.2578, θ2

2 = −5.3667, θ3
2 = −0.8000

96: θ1
1 = −0.0024, θ2

1 = −2.2302, θ3
1 = −2.2302

96: θ1
2 = 0.2554, θ2

2 = −5.3595, θ3
2 = −0.8024

Hence,

blue = contact-slip −→ red = no contact
blue = contact-slip −→ blue = contact-slip



Consider a smooth loading path α ∈ I 7→ f (α) for F fixed

Example 2
F = (4,4) ∈ R2, fν,1 = −0.1α + 0.4, fν,2 = 0.2α + 1.8,
ft,1 = 1.1α + 0.2, ft,2 = 0.8α− 0.1, λ = µ = 1.

red = no contact, green = contact-stick, blue =
contact-slip
◦ = the transition point



Computed solution

red = no contact, green = contact-stick, blue =
contact-slip
◦ = the transition point



Zoom: transition points 1 and 2

red = no contact, blue = contact-slip
◦ = the transition point



Thank you for your attention.
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