# Self-contact, self-collisions and large deformations 

## Michel Frémond <br> Francesca Nerilli

Dipartimento di Ingegneria Civile

Università di Roma Tor Vergata



$$
F=R W, \quad W \in C, \quad R R^{T}=I, \quad \operatorname{det} R=1
$$

$$
\Pi=\frac{\partial \psi}{\partial F}, \quad F=\operatorname{grad} \Phi
$$

$\Pi$ Boussinesq stress, $\quad \psi$ the free energy, $\psi=\psi(F)$

## $\operatorname{det} F>0$

non interpenetration condition.

Rotation matrix R does not intervene; it is impossible that $\psi$ is a convex function of F,
but
there exist mathematical results.

## How to take R into account?

VELOCITY OF DEFORMATION
grad $\vec{U}$
$\Omega=\frac{\partial R}{\partial t} R^{T}$
$\operatorname{grad} \Omega=\Omega_{\alpha}$

EQUATIONS OF MOTION

$$
\begin{gathered}
\rho \frac{\partial \vec{U}}{\partial t}=\operatorname{div} \Pi \quad \text { in } \Omega_{a} \\
\operatorname{div} \Lambda+M=0 \quad \text { in } \Omega_{a}
\end{gathered}
$$

+ B.C. + I.C.
$\underline{W}$ is the physical quantity which describe the elongation. Impenetrability condition

$$
W \in C
$$


grad $R$ describes the spacial variation of the rotation matrix.

## Free energy

$$
\bar{\Psi}(W, \operatorname{grad} R)=\Psi\left(W,\|\operatorname{gradR}\|^{2}\right)+I_{C}(W)
$$

Constitutive laws

$$
\left\{\begin{array}{l}
\Pi=R\left(\frac{\partial \Psi}{\partial W}+S^{\text {reac }}+A^{\text {reac }}\right) \\
S^{\text {reac }} \in \mathscr{S}, \quad A^{\text {reac }} \in \mathscr{A}, \quad S^{\text {reac }}+A^{\text {reac }} \in \partial I_{c}(W)
\end{array}\right.
$$

$$
\Lambda=4\left(\frac{\partial \Psi}{\partial\|\operatorname{gradR}\|^{2}}\right)(\operatorname{grad} R) R^{T}
$$

$$
M=\Pi W R^{T}-R W \Pi^{T}
$$

- ( $W, \operatorname{gradR}) \rightarrow \Psi(W, \operatorname{gradR})$ may be convex.

The effect may be proportional to the cause.

- There exist non unique equilibrium positions in $W^{1, p}(\Omega), \quad p>3$.
- If $\Psi(W) \rightarrow+\infty$ when $\operatorname{det} W \rightarrow 0$ there is no flattening. Reaction $A^{\text {reac }}$ is present.
- If $\Psi(W)<+\infty$ for $\operatorname{det} W=0$ flattening is possible. Reaction $A^{\text {reac }}$ and $S^{\text {reac }}$ are present.
- Constitutive law
$\Pi=\frac{\partial \Psi}{\partial F}=R \frac{\partial \Psi}{\partial W}$
is not always valid.
$\Pi \in R\left(\frac{\partial \Psi}{\partial W}+\partial I_{C}(W)\right) \quad$ is always valid.

VELOCITY OF DEFORMATION
$\vec{U}(a) \quad \vec{U}(b)$
INTERNAL FORCE
$\vec{R}(a) \quad \vec{R}(b)$
EQUATIONS OF MOTION

$$
\frac{\vec{R}(a)}{\|\operatorname{cof} W(a)\|}+\frac{\vec{R}(b)}{\|\operatorname{cof} W(b)\|}=0
$$



CONSTITUTIVE LAW

$$
\vec{R} \in \partial \Phi(\vec{U}(a)-\vec{U}(b))
$$

## Self collisions

Interior forces become percussions

Constitutive laws involve

$$
\frac{\vec{U}^{+}(a)-\vec{U}^{+}(b)+\vec{U}^{-}(a)-\vec{U}^{-}(b)}{2}
$$

Collisions when flattening

Boussinesq stress becomes Boussinesq percussion stress

No difficulty: velocity $\vec{U}^{+}$is uniquely given by velocity $\vec{U}-$

$$
\begin{gathered}
\operatorname{rankW}=3 \\
\text { Unknowns } \Phi(a, t), R(a, t), A(a, t) \\
\rho \frac{\partial^{2} \Phi}{\partial t^{2}}=\operatorname{div}\left\{R\left(\frac{\partial \Psi}{\partial W}+A\right)\right\} \\
\operatorname{grad} \Phi=R W(\Phi) \\
\operatorname{div}\left(\frac{\partial \Psi}{\partial \operatorname{gradR}} R^{T}\right)+R(A W(\Phi)+W(\Phi) A) R^{T}=0 \\
+ \text { B.C. }+ \text { I.C. }
\end{gathered}
$$

$A$ is the antisymmetric reaction matrix

$$
A \in \partial I_{c}(W)
$$

$$
\begin{gathered}
\Psi(W, \operatorname{grad} R)=\frac{k}{2}(W-I)^{2}+\frac{\hat{k}}{2}\|\operatorname{grad} R\|^{2}+I_{C}(W) \\
\rho \frac{\partial^{2} \Phi}{\partial t^{2}}=\operatorname{div}\{R(k(W(\Phi)-I)+R A\} \\
\operatorname{grad} \Phi=R W(\Phi) \\
\operatorname{div}\left(4 \hat{k}(\operatorname{gradR}) R^{T}\right)+R(A W(\Phi)+W(\Phi) A) R^{T}=0 \\
\Pi \vec{N}=\vec{g}, \quad \Lambda \vec{N}=\vec{m} \quad \text { on } \Gamma_{1} \\
\Phi(a, t)=a, \quad R=I \quad \text { on } \Gamma_{0} \\
\Phi(a, 0)=a, \quad \frac{\partial \Phi}{\partial t}(a, 0)=0
\end{gathered}
$$

## A schematic example

Iterative method: $\quad \Phi^{n}, \quad R^{n}, \quad A^{n}$ are known at time $n \Delta t$.
Step 1.

$$
\begin{gathered}
\rho \frac{\partial^{2} \Phi}{\partial t^{2}}=\operatorname{div}\left\{R^{n}\left(k\left(W\left(\Phi^{n}\right)-I\right)+R^{n} A^{n}\right\}\right. \\
\longrightarrow \text { give } \Phi^{n+1}
\end{gathered}
$$

Step 2.

$$
\operatorname{grad} \Phi^{n+1}=R W\left(\Phi^{n+1}\right)
$$



Step 3. $\operatorname{div}\left(4 \hat{k}\left(\operatorname{grad} R^{n+1}\right) R^{n+1} T\right)+R^{n+1}\left(A W\left(\Phi^{n+1}\right)+W\left(\Phi^{n+1}\right) A\right) R^{n+1} T=0$


Weak equations and finite elements
$\Phi, R$ are piecewise continous
$A$ is either piecewise continous or piecewise constant

## Application 1 - Traction



Only elongation $\longrightarrow \quad A=0 \quad$ at each time step

$$
R=I \quad \text { at each time step }
$$

$k$ is the elongation rigidity

Periodic motion


Only torsion $\longrightarrow A \neq 0$ at each time step $R \neq I \quad$ at each time step
$\hat{k}$ is the rotation rigidity.
In case $\hat{k}=0$ (the usual theory) rotation does not have limitation.
Periodic motion

## Results




$$
k=1 \cdot 10^{10} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \quad \rho=1 \cdot 10^{3} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$


Position of the point 3

Position of the point 4


## Results



Position of the point 1


$$
k=1 \cdot 10^{10} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \quad \rho=1 \cdot 10^{3} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$




Position of the point 3


Position of the point 4


$k=1 \cdot 10^{10} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \quad \rho=1 \cdot 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{3}}$

Position of the point 1


Position of the point 3


Position of the point 4



$$
\hat{k}=0
$$



Position of the point 1


Position of the point 2


Position of the point 3


Position of the point 4


