

Self-contact, self-collisions and large deformations Michel Frémond Francesca Nerilli

Dipartimento di Ingegneria Civile

Università di Roma Tor Vergata

$$\Pi = \frac{\partial \psi}{\partial F}, \qquad F = grad \Phi$$

 Π Boussinesq stress, Ψ the free energy, $\Psi = \Psi (F)$

det F > 0

non interpenetration condition.

Rotation matrix R does not intervene; it is impossible that Ψ is a convex function of F,

but

there exist mathematical results.

$$div \Lambda + M = 0 \quad in \Omega_a$$

+ B.C. + I.C.

 \underline{W} is the physical quantity which describe the elongation.

grad R describes the spacial variation of the rotation matrix.

Free energy

$$\overline{\Psi}(W, gradR) = \Psi(W, \left\|gradR\right\|^2) + I_c(W)$$

Constitutive laws

$$\begin{cases} \Pi = R(\frac{\partial \Psi}{\partial W} + S^{reac} + A^{reac}) \\ S^{reac} \in \mathcal{S}, \quad A^{reac} \in \mathcal{A}, \quad S^{reac} + A^{reac} \in \partial I_{c}(W) \end{cases}$$

$$\Lambda = 4 \left(\frac{\partial \Psi}{\partial \|gradR\|^2} \right) (gradR) R^T$$

$$M = \Pi W R^{T} - R W \Pi^{T}$$

• $(W, gradR) \rightarrow \Psi(W, gradR)$ may be convex.

The effect may be proportional to the cause.

- There exist non unique equilibrium positions in $W^{1,p}(\Omega), p > 3.$
- If $\Psi(W) \to +\infty$ when det $W \to 0$ there is no flattening. Reaction A^{reac} is present.
- If $\Psi(W) < +\infty$ for det W = 0 flattening is possible. Reaction A^{reac} and S^{reac} are present.
- Constitutive law

$$\Pi = \frac{\partial \Psi}{\partial F} = R \frac{\partial \Psi}{\partial W}$$
 is not always valid.
$$\Pi \in R \left(\frac{\partial \Psi}{\partial W} + \partial I_C(W) \right)$$
 is always valid.

Collisions

Self collisions

Interior forces become percussions

Constitutive laws involve

$$\frac{\vec{U} + (a) - \vec{U} + (b) + \vec{U} - (a) - \vec{U} - (b)}{2}$$

Collisions when flattening

Boussinesq stress becomes Boussinesq percussion stress

No difficulty: velocity \vec{U}^{+} is uniquely given by velocity \vec{U}^{-}

rankW = 3Unknowns $\Phi(a,t), R(a,t), A(a,t)$ $\rho \frac{\partial^2 \Phi}{\partial t^2} = div \left\{ R \left(\frac{\partial \Psi}{\partial W} + A \right) \right\}$ $grad \Phi = R W(\Phi)$ $div\left(\frac{\partial\Psi}{\partial gradR}R^{T}\right) + R(AW(\Phi) + W(\Phi)A)R^{T} = 0$ + B.C. + I.C.

A is the antisymmetric reaction matrix

$$A \in \partial I_c(W)$$

$$\Psi(W, gradR) = \frac{k}{2} \left(W - I \right)^2 + \frac{\hat{k}}{2} \left\| gradR \right\|^2 + I_c(W)$$

$$\rho \frac{\partial^2 \Phi}{\partial t^2} = div \left\{ R(k(W(\Phi) - I) + RA) \right\}$$

 $grad \Phi = R W(\Phi)$

 $div \left(4\hat{k}(gradR)R^{T}\right) + R(AW(\Phi) + W(\Phi)A)R^{T} = 0$

 $\Pi \vec{N} = \vec{g}, \qquad \Lambda \vec{N} = \vec{m} \qquad on \ \Gamma_1$

 $\Phi(a,t) = a, \qquad R = I \qquad on \ \Gamma_0$

$$\Phi(a,0) = a, \qquad \frac{\partial \Phi}{\partial t}(a,0) = 0$$

k is the elongation rigidity

Periodic motion

 \hat{k} is the rotation rigidity.

In case $\hat{k} = 0$ (the usual theory) rotation does not have limitation.

Periodic motion

16

17

