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The purpose of this work is to model 

a  complicated material response ...

G. Del Piero, M. Raous, 

A unified model for adhesive interfaces with 
damage, viscosity, and friction

Eur. J. Mech. A/29: 496-507, 2010



... with the smallest possible number of 
variables



no energy minimization



the material interface has negligible thickness

rigid body

rigid body

planar 
material interface

u, v :  normal and tangential relative displacements
σ, τ :  normal and tangential forces
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Consider first the purely normal case v(t) = 0

in the presence of adhesion and damage

Problem

Given a deformation process ta (u(t),v(t)) 

Find the response t a (σ (t),τ (t)) 



ur u

σ

σ = f(u)

experimental input

the loading curve

ur = complete rupture



ur u

σ

σ = u g(u)
σ = f(u)

f is star-shaped with respect to the origin :

u a g(u) is decreasing



the desired loading-unloading response

um =  the largest displacement reached in the past history
α =  um  = state variable

u um                     ur                u

σ

σ = f(u)



construction of the model

(i) strain energy and dissipation

strain energy

dissipation

σ

u α ur                 u

σ = f(u)
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(ii) state space
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energy conservation

0)t( ≥∆&

dissipation principle

(iii) general laws



dissipation potential
damage, rate-independent

dissipation rate
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dissipation principle

(iv) choice of the potentials



power equation
by differentiation of energy equation

external power

internal power
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power equation
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power equation

0 if free is >uu&



note :  σ −≠ 0 only if .0==uu &

Signorini contact law

Signorini contact law for the rates at u = 0

(v) choice of the constitutive equation
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(vi)  evolution equation for αααα
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partition of the state space



in 1,    g′(α) ≠ 0,   α2 − u2 ≠ 0  ⇒ 0=α&

1 is the elastic region

reduces to

in 2, 3, 4,  the power equation is 

identically satisfied  

power equation



in 3, 4,  the second-order power 

equation is identically satisfied

It is necessary to take the second 

derivative of the energy equation

in 2,    g′(α) ≠ 0,   α = u ≠ 0  ⇒ 0)( =− αα &&& u
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It is necessary to take the third 

derivative of the energy equation

in 3,         
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unilateral contact

in 4, complete rupture 0=⇒= αα &ru



the evolution of αααα
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directions of evolution 

in the (σσσσ, u) plane 

the desired response has been obtained by a 

proper choice of the potentials, assuming 

energy conservation and dissipation principle

σ

σ = f(u)

u α u



the purely normal case in
the presence of viscosity

the viscous dissipation rate

the viscous dissipation potential

same state variable for dissipation and damage



the curve σσσσ = = = = f(u) is not anymore the loading curve,

the state variable α α α α is not anymore the maximum 
displacement attained in the past history.

but σ σ σ σ = = = = f(u) is again the border of the elastic zone,

and αααα is again the intersection of the loading 

curve σ σ σ σ = = = = f(u) with the straight line joining the 

point (σσσσ , u) and the origin
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and with the same constitutive 
equation as above it reduces to

with the addition of the viscous term, 
the power equation becomes



there is dissipation only if u >α

the new evolution law for the state variable is
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the response to a cyclic process from α (0) = α0
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σ

∆d

∆v



normal + tangential loading
adhesion + damage

normal response:  σ  =  fN(u)

tangential response: τ  =  fT(v)

strain energy

dissipation



the power equation becomes

and and and and with the constitutive equationsthe constitutive equationsthe constitutive equationsthe constitutive equations

it reduces toit reduces toit reduces toit reduces to



with the positions

the power equation takes the form

and the evolution equation for α becomes



state: (u, v, α)
state space: ϕ (u, v, α) ≤ 0

directions of evolution
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normal + tangential loading
adhesion + damage + viscosity + friction

2
2
1

v )( αα &hD =

due to viscosity

dissipation power due to damage

αααα &2
2
1

d ))(')('( TN ggD +−=

due to friction

||)(f vD &−= σαµ

µ  µ  µ  µ  =  =  =  =  friction coefficient



response to a given process
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conclusions

• a relatively simple and general model for the response 

of an adhesive interface has been constructed

• besides damage, viscosity and friction, other effects 

can be taken into account by introducing appropriate 

potentials

• more sophisticated responses can be obtained by 

introducing supplementary state variables

• the axiomatic frame developed here provides a flexible 

tool for describing a wide range of experimentally 

observed material behavior



THE  END


