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Masonry material is brittle and characterized by a very small and aleatory value 
of toughness; cracks are kind of physiological in masonry, and are likely to 
open up in the material under the effect of the working loads solely. 
As a first approximation to this behavior the no–tension material has been 
proposed. This crude model that describes the material as elastic in 
compression but incapable of sustaining tensile stresses, was first rationally 
introduced by Heyman in [1] and studied by Di Pasquale in [2].

The idea of a no–tension (NT) material underlies more or less consciously the 
design of masonry structures since antiquity, particularly for vaulted masonry 
structures and arches. 
Based on the NT model the safety of the structure is a problem of geometry 
rather than of strength of materials, in keeping with the spirit of the “rules of 
proportions” used by ancient architects for masonry design.

NENT model

Essentially the constitutive restrictions defining NT materials are as follows:
- The stress tensor is assumed to be negative semidefinite.
- The total strain is decomposed additively into the sum of its elastic and 
anelastic parts, the elastic part depending linearly upon the stress. 
- A normality law to the elastic stress domain is imposed on the anelastic strain 
that turns to be positive semidefinite.
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NT model in 2d (walls)
The basic restriction for NT materials is that the stress T is negative semidefinite:

Other asssumptions.The infinitesimal strain is decomposed additively into two 
parts:

The elastic part is linerly related to stress

The total anelastic strain (fracture) satisfies a normality rule …equivalent to:
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As shown by Del Piero in [3], the Static and Kinematic theorems of Limit 
Analysis hold, with some peculiarities, for bodies composed of NT material.
In particular the safety of the applied load can be tested through the first 
theorem.

Notice that the strenght of a NT material is infinite, therefore infinite stresses 
are admissible, as long as they are compressive, and singular stress fields 
are perfectly adequate for testing the Static theorem.
Such singular stress fields are not only admissible but also acceptable as 
equilibrium solutions if the material is considered as rigid in compression. 
The use of singular stress fields for the problem of equilibrium of NT 
materials has been recently proposed by Lucchesi et al [6]. Here we 
propose a sort of graphycal way to construct them, based on the Airy stress 
formulation. 

NT materials & Limit Analysis in 2d
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Singular stress fields in 2d
Singular stress fields are bounded measures, that is

In equilibrium. the stress T must be balanced. In absence of body forces:

div T = 0 ….

…extend the divergence free condition to singular stress fields (Lucchesi et al)
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The set of bounded (Radon) measures is called Mb(Ω). If T belongs to Mb(Ω) 
then T consists of two parts:

We shall restrict to the simpler case in which the support of the singular part is 
a 1d set. In particular we consider singular stress fields that are line Dirac 
Deltas over a finite number of rectifiable curves.



Singular stress fields and ST methods in 2d

Why do we like such fields ?

Because they are easy to be obtained and we can interpret them as contact 
forces acting on 1D structures arising inside the body Ω … in the same spirit of 
Strut and Ties methods (See [4]).
Except that here the structures can only be composed by truss elements.
The axial forces inside such structures can be made to balance the external 
loads and are equivalent to equilibrated stress fields becoming singular along 
the structure axis.

The rationale for using singular stress fields for elastic problems is to consider 
them as approximations of the true stress, and that there is a way in which 
these “infininite” stresses can be smeared over some influence area.
A systematic and convergent way to do so is offered, in Classical LE, by the 
LSM (Angelillo et al [5]) …. relaxed form of Complementary Energy
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Singular stress fields in 2d. Airy stress function
A simple way to obtain balanced (divergence free) singular stresses and 
visualize them is to use the Airy’s stress function formulation (assume b=0)

Example. Rectangular strip under equal and 
opposite concentrated forces
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… and consider F SBH(Ω), that is F C°(Ω) and the Hessian of F , 
H(F) Mb(Ω). 



Singular stress fields: simple examples
Self stress in an unloaded body 1

Airy’s stress function formulation
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Singular stress fields: simple examples
Self stress in an unloaded body 2
Combination of “singular” and “diffuse”(absolutely continuous) stress
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Differences between Classical LE and NT models
Diffusion of concentrated load in a strip (CLE)

Boundary data m and n

Prolongate the data with a 
ruled surface

Insert a compensating
triangle
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Differences between Classical LE and NT models
Diffusion of concentrated load in a strip (NT material)
Due to NT constraint Airy’s stress function F must be concave

According to the Static Theorem if a Concave F can be found, in 
equilibrium with the given loads, then the load is safe

There is no Saint Venant effect

The “structure is created by the intersection 
of the three ruled surfaces (planes)
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A basic example: 
The rocking of a NT wall due to a horizontal load

The wall is loaded by a uniform vertical load at the top base …
and by a horizontal concentrated force at the left corner 

The “structure” is created by the intersection 
of the two ruled surfaces

Palmanova’10



Another example: 
NT wall beam subject to a transverse load

The wall is loaded by a uniform vertical load at the top base …
and by uniform horizontal loads at the two ends. Uniform vertical loads are 
also given at the two ends 

Boundary data m and n

Prolongating data with ruled surfaces …

support of gradient discontinuities gives “structure”

Palmanova’10



Walls
Allowing for stress functions F’s that can have folds (C° (SBH) functions), 
singular stress fields that are statically admissible (equilibrated and 
compressive) are easily created.

We may think of the load as being carried by a sort of truss structure, 
coincident with the support line of the jump set of gradF.
The value of the jump across the line measures the axial force inside the 
structure…arching.
In more complex cases, such as walls with openings, the generation of the 
stress surface can be automated. Often the static multiplier gets close to the 
kinematic one (obtained by block rigid body rotations).
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Vaults
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So as a masonry arch can be idealized as an inverted chain (the thrust 
line) a masonry vault can be modeled as a membrane S. If the vault is 
unilateral the membrane must be compressed at any point and contained 
between the estrados and intrados surfaces of the vault.

The main difference between a chain and a membrane is that the chain is 
underdetermined and the equilibrium under a given load is assured only if 
the chain takes the “equilibrium shape”. 
On the other hand a membrane S can equilibrate a wide range of loads over 
a specified shape. The membrane S becomes undertetermined if is 
unilateral: 

“the shape S can be given as long as S is under compression for the given 
load, but it must adapt to loads in regions over which the stress becomes 
uniaxial”.



Vaults
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Geometry.
…Then it is useful to adopt a description of S for which the “planform” Ω is 
fixed and the rise of the membrane can become a further variable:

y= x1 e1 + x2 e2 + f(x1,x2) e3 ,   (x1,x2) Ω   .

The couple of parameters {θ1=x1, θ2=x2} define a curvilinear system over S
whose associated natural and reciprocal bases are



Vaults
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Forces
We consider the equilibrium of S under the action of surface forces per unit 
planform area

b= b(1) e1 + b(2) e2 + b(3) e3    .

The generalized membrane stress is denoted

T = Tαβ aα ⊗ aβ   .

Projecting the vector equilibrium equation

∂/∂θγ (Tαβ aα ⊗ aβ ) aγ + b/J = 0 ,

over the three no-coplanar directions e1, e2, a3, get



Vaults
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Forces
On introducing the pseudo-stresses

Sαβ= J Tαβ   ,

can rewrite the equilibrium equations as

that is essentially Pucher’s form of membrane equilibrium.
The first two equations have the same form of the plane case, then if b is a 
potential load they can be solved in terms of a stress function F. In the simple 
case of vertical loads (b(1)=b(2)=0):

Substituting the Airy’s solution into the transverse equilibrium equation 
(with p=-b(3))…



Forces
… this is a second order pde both in F and f, symmetric by interchanging F 
with f. If the shape of S is given, that is f is given, a restricted class of F’s is 
obtained by solving it.
If the stress corresponding to such a restricted class of stress functions F is 
compressive, the equilibrium solution is acceptable for the unilateral 
membrane. If not the shape must be changed … at least in the regions 
where the stress is not negative semidefinite. 
Another possible approach to obtain an admissible stress field is to start 
from a statically admissible pseudo-stress (through the assignement of the 
corresponding stress function F) and determine, by solving the pde of 
transverse equilibrium, a restricted class of shapes f that can fit inside the 
vault.
To do so we need to translate the unilateral restrictions on T onto 
constraints on the pseudo-stress S.  

Vaults



Unilateral restrictions
The unilateral assumptions consist for the membrane S into the following 
restrictions on T:

tr T ≤ 0   ,   det T ≥ 0  .

In terms of the contravariant components of T they reduce to the form:

gαβ Tαβ ≤ 0   ,    J2 (T11T22 – (T12)2) ≥ 0   ,

that, in terms of S and in more esplicit form, become

•ν(S) = (1+f,12) S11 + (1+f,22) S22 + 2 f,1f,2 S12 ≤ 0   ,

μ(S) = S11 S22 – (S12)2 ≥ 0  .

The equation μ(S)=0 defines the boundary of a right circular cone C of axis 
S11=S22 and “opening angle” π/2. The inequality μ(S) ≥ 0 restricts S to 
belong to the interior or to the boundary of C.

Vaults



Unilateral restrictions
Noticing that ν(S) =0 can be written as:

S . (I + M) = 0  ,

where M = m ⊗ m , with m = f,1 e1 + f,2 e2 , ν(S) =0 is the equation of the plane 
Π orthogonal to (I + M) and passing through the origin O. Since (I + M) is 
positive definite Π intersects the cone C only at O and then the condition ν(S) ≤ 
0 can be substituted by the simpler inequality

ν∗(S) = S11 +  S22 ≤ 0   .

Therefore the restrictions on S assume the same form of the plane case and 
the Airy’s stress function must be concave:

Based on the strict analogy with the plane case the planform Ω can be split, as 
in the 2d case, into the three disjoint regions Ω1, Ω2, Ω3 … and the isostatic 
lines of compression, in the non degenerate regions Ω2 , are straight if 
b(1)=b(2)=0.

Vaults



A trivial (but fundamental) example: parabolic shape.
There is a particular shape of the vault for which a very simple membrane 
equilibrium solution under uniform vertical load (p.u. planform area) exists: is 
the domical vault (“volta a vela” ). 

Vaults

“Volte a vela”. Royal Palace Napoli

In this case the form of the shape f and 
stress F can be taken the same:

F = σ/2 (L2-x1
2-x2

2)  , f = H/L2 (L2-x1
2-x2

2) ,

where, for equilibrium with the uniform load 
p°:

σ = p° L2/(4 H)   .



This simple equilibrium solution can be adapted to different shapes of the vault 
as long as the parabolic surface S can be fitted in between the extrados and 
intrados surfaces.  

Vaults

… thickness large enough …
… a parabolic shape can always be fitted 
inside a plate …. large lateral forces for H 
small



Vaults
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Singular stress.
The main difference between the equilibrium problem for unilateral 
membranes and for unilateral plane bodies is that, in the first case, the 
basic equilibrium equations are supplemented by the transverse 
equilibrium equation … for vertical loads, in terms of the Airy’s solution:

The question arise if for unilateral membranes singular stress fields are 
acceptable as s.a. stress fields as in the plane case.
Notice that not only the Airy’s surface but also the surface S can have folds 
…singular Hessian. Most immediate examples:      

cross vault                                 cloister vault



Vaults
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Singular stress.
If the vault is thick enough a smooth surface S could always be fitted inside 
it, but a folded S may be necessary.
Actually we would like to start by giving the stress (that is F) and find f that 
satisfy transverse equilibrium.
To fix ideas assume that F,11 is a line Dirac delta along x2. In order to satisfy

either
- f,22=0  ,
- p singular along x2 and canceling F,11 f,22   ,
- f,11 singular and F,22 f,11 canceling F,11 f,22 . 



Cross vault.
For a cross vault (“volta a crociera” ) a sensible choise for the pseudo-stress 
could be the one depicted in the figure….

Vaults

“Volta a crociera”. Royal palace, 
Palermo

..to which there corresponds the stress function

σ/2 (L2-x1
2)  , x2<x1 & x2>-x1 ,

F =
σ/2 (L2-x2

2) , otherwise   .

The singular part of the Hessian of F on the 
interface Γ23 reads

- δ(Γ23) ⌦2 σ x1 e1’⊗ e1’



Cross vault.
Vaults

In this case the form of the shape f is

H/L2 (L2-x2
2)   , x Ω1 U Ω3

f =
H/L2 (L2-x1

2)   , x Ω2 U Ω4

… the two singular parts cancel each other on each interface:

… while, for equilibrium with the uniform load p°:  σ = p° L2/(2 H)   .

- δ(Γ) ⌦2 σ x (-H/L2)+ δ(Γ) ⌦2 H/L2 x (-σ) == 0  …



Cloister vault.
For a cloister vault (“volta a padiglione” ) the first idea could be to interchange 
stress and shape as shown in the figure….

Vaults

.. it does not work .. F is NON-CONCAVE .. stress …
Portion of “Volta a padiglione”. 
Palazzo della Signoria, Firenze



Cloister vault.
Another way: use parabolic equilibrium solution in a central part. Extend to 
boundary with uniaxial prolongation …

Vaults

Equilibrium shape …. f(x1,x2) ….

Corresponding stress function F…



Parabolic dome.

f(ρ) = H(1-ρ2/L2) 

Uniform load … same solution as before.

Cylindrical description (axial symmetry)
Cylindrical coordinates {θ1,θ2}={ρ,θ}, 

Physical stress components in terms of Airy’s 
stress function

Transverse equilibrium:



Parabolic dome.

Stress function Stress

Physical stress components:

σ11 = F,1/ρ ,   σ22 = F,11 ,   σ12 = 0 

Non uniform load: load concentration in center part (lantern)

Transverse equilibrium



Central “eye” 

Stress:

σ11 = F,1/ρ = - (ρ−a) σ/ρ , σ22 = -σ ,  σ12 = 0   .

Uniform load.

Stress function:      F = -1/2 σ (ρ – a)2

Possible solution for the shape:

shape function:      f = -p°/(4 σ) ρ (ρ +2a)



Helical stair

Stress:  σ11 = F,1/ρ = - (ρ−a) σ/ρ , σ22 = -σ ,  σ12 = 0   .

Transverse equilibrium: 

Uniform load: p°.   f depends on θ2 =θ
…For F use same stress function as before (independent of θ):

Stress function:      F = -1/2 σ (ρ – a)2

Possible solution for the shape:

shape function: f = -p°/(4 σ) ρ (ρ +2a) + k θ
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